

## Klimaneutraler Campus Leuphana Universität Lüneburg

# Energiekonzept und Umsetzung

Oliver Opel

27. September 2017



Gefördert durch:



aufgrund eines Beschlusses des Deutschen Bundestages





Medium-sized town: 72.500 people Close to Gorleben, projected Nuclear Waste disposal site

50 % renewable electricity (100 % by 2021)25 % renewable heat (7 % with industry)4 local heating networks

- CHP / Vessels
- Biomethane / natural gas
- ~20 % bioenergy land use in the region

#### University:

9500 students 1100 Staff members The Campus has 50 % share of one local heating network





| Year |                                                                                                                                |                        |
|------|--------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 1996 | Foundation of the interdisciplinary department "Environmental Science" Paradigma: 50 % natural and 50 % social sciences        |                        |
| 1997 | Joining the "University Network for Sustainability",<br>COPERNIKUS Campus                                                      |                        |
| 1999 | Founding of the senate commission "Agenda 21"                                                                                  | ****                   |
| 1999 | Project "Agenda 21 and University of Lueneburg"<br>(1999 - 2001)                                                               | E                      |
| 2000 | Implementation of the EMAS management and reporting scheme Stafe (1 Pers. 50%), guidelines, 2 year reporting cycle (ISO 14001) | MAS                    |
| 2001 | Research and development project<br>"Sustainable University" (2004 - 2007)                                                     | EPRÜFTES<br>MANAGEMENT |



#### Sustainability Implementation: Milestones at the Leuphana University

| Year |                                                                                                                                    |
|------|------------------------------------------------------------------------------------------------------------------------------------|
| 2003 | Conversion to a foundation under public law: More freedom in decision-making, also relevant for building and energy management     |
| 2005 | Bestowal of the UNESCO Chair "Higher Education for Sustainable Development"                                                        |
| 2006 | Decision of the senate for a <b>"humanis-</b><br>tic, sustainable and action-oriented" university for the 21 <sup>st</sup> century |
| 2007 | Definition of the goal: climate neutral university                                                                                 |
| 2007 | First overall sustainability report "Steps to the future"                                                                          |
| 2008 | Emphasis on sustainability research as one of four initiatives                                                                     |
| 2010 | Foundation of the Faculty Sustainability                                                                                           |

#### **E**missions: Zero Carbon?

| CO <sub>2</sub> -Reduction | Timeframe    | Action                                             |  |  |
|----------------------------|--------------|----------------------------------------------------|--|--|
| 3.5 t                      | per year     | New lighting system in the gym                     |  |  |
| 22 t                       | per year     | Photovoltaics on the roof of the gym               |  |  |
| 1500 g                     | per kWh food | Green Canteen (organic, vegetarian food)           |  |  |
| ?                          |              | Climate-neutral mail (GoGreen)                     |  |  |
| ?                          | per year     | New efficient lighting system in the library       |  |  |
| 22 t                       | per year     | Refurbished local heating network (2010)           |  |  |
| ?                          | per year     | Use of biogas for heating of the Volgershall campu |  |  |
| 3.3 t                      | per year     | Photovoltaics on the roof of building 9            |  |  |
| 19.5 t                     | per year     | Optimization of the lighting scheme in the library |  |  |
| 21 t                       | per year     | Optimization of the cleaning scheme in the library |  |  |
| 90 t                       | WS 06/07     | "dont waste energy" campaign                       |  |  |
| 6.6 t                      | WS 04/05     | "Energy Trophy" campaign                           |  |  |
| 10 t                       | per year     | Heat savings between christmas and new year        |  |  |
| 4.4 t                      | WS 01        | Campaign in one building                           |  |  |
| 21 t                       | per year     | Technical optimization in building 14              |  |  |



1905

1282

1517

**Emissions 2010: How to achieve Zero Carbon?** 

3694

Leuphana University, t CO<sub>2</sub> 6 GWh/a th.; 2.5 GWh/a el. 1100 Staff members 9500 Students

Renewable electricity since 2011



□ Electricity (renewable)

□ Business Trips

Commuter Traffic



#### **Emissions 2010: How to achieve Zero Carbon?**





#### Integral, campus-wide planning and goal setting



The buildings on the campus were renewed and insulated (roofs)



Roofs were used for PV (east/west/south)

 650 kWp PV (total 720 kWp), 95 % used in university electricity network (~600 MWh, 25 % of the demand)



- 40% savings heat / electricity:
- and insulated for more useable space
- renewed heating network
- new pumps, optimisation of the heating systems
- LED-lighting
- building automation
- energy management





The design of the new building was improved in student seminars at an early stage (2007).



Campus

Zentralgebäude

#### The building (17.400 m<sup>2</sup>) offers:

- 6 Seminar rooms, 200 bureaus, 14 meeting rooms,
- Open-space as well as group meeting rooms for students
- A cafeteria
- A machine hall
- And a large auditorium (1.200 seats) with retreatable tribune

that can be connected to the entrance hall and foyer for large events (up to 2.500 people) concerts exhibitions (even 2 or 3 events in parallel are possible)





## Solar facade design: High solar gains in winter

Lower heat demand!







The switchable glazing "E-Control" (electrochrom) has big advantages It will be used in the south-east and south-west facades



- 50% cooling demand in summer compared to sunshade glazing
- + 50% solar gains in winter whilst providing good insulation (Triple glazed)
- savings in total > 160 MWh/a ~ 10 % of the end energy consumption
- In the second second
- fits the presence- and daylight-controlled LED-lighting-system

#### In the model (DOE.2E) it works fine...

We dont know how the users will react – Monitoring will start in 2017.



### Some numbers... (Measurements, DOE.2E and DIN 18599 modeling)





#### An energy management system

To help with openable windows, heating and cooling systems – and it will give feedback!





Abb. 3

Different temperature levels in the energy system allow for optimal heat use and increase thermal storage efficiency.



| Electricity                                                                                                                                                                                                                 | Cooling                                                                                                                                                                                                                               | HT-Heating                                                                                                                                                                                                                                | Storing of heat                                                                                                                                                         | Use of stored heat                                                                                                                                                                             | LT-Heating<br>(central<br>building)                                                                                                                                                                                                      | Return flow                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The exergy-rich<br>and valuable fuel is<br>used primarily for<br>electricity<br>production in CHP-<br>units. The heat<br>demand of the<br>Campus is fully<br>covered by excess<br>heat of the<br>electricity<br>production. | Cold is equally<br>regarded as<br>relatively exergy-<br>rich, because<br>electricity is used<br>for cooling. More<br>exergy-efficient<br>cooling is realised<br>by using excess<br>heat or solar<br>energy in<br>absorption chillers. | Excess heat from<br>the CHP units is of<br>a sufficient<br>temperature level<br>for space heating<br>purposes. In the<br>Campus-systems,<br>different supply<br>temperatures are<br>needed, which can<br>be provided from<br>the HT-side. | If the heat demand<br>is lower then the<br>excess heat<br>supplied by the<br>CHP-units, for<br>example in<br>summer, heat is<br>stored in an<br>underground<br>aquifer. | The stored heat<br>can be used either<br>directly or by<br>means of a heat<br>pump. In the<br>Campus system,<br>direct use is<br>facilitated by<br>means of low-<br>exergy heating<br>systems. | The return line from<br>the HT-heating<br>systems still is hot<br>enough to drive<br>low-temperature<br>(low-exergy)<br>heating systems.<br>Especially in the<br>new central<br>building, low-<br>exergy heating is<br>used exclusively. | In order to extract<br>as much heat as<br>possible from the<br>underground<br>aquifer storage, a<br>low return line<br>temperature is<br>needed. The<br>cascade shown<br>here helps to<br>minimize return<br>line temperatures<br>and thus<br>maximizes storage<br>efficiency |

18

Exergy efficiency analysis show the advantages of cogeneration + thermal storage due to the minimized use of inefficient peak load heat production

|                                                  | Exergy eff. η <sub>c</sub> | Exergy use               |
|--------------------------------------------------|----------------------------|--------------------------|
| Oil+Gas Boilers                                  | 0.03                       | 0.68 · Q <sub>Heat</sub> |
| Baseload-CHP                                     | 0.49                       | 0.66 · Q <sub>Heat</sub> |
| Power-operated<br>CHP with short<br>time storage | 0.63                       | 0.53 · Q <sub>Heat</sub> |
| CHP with aquifer storage                         | 0.68                       | 0.52 · Q <sub>Heat</sub> |

• baseload plant: 60% CHP heat, 40% boiler, 50m<sup>3</sup> water storage

• power-operated plant: 90% CHP heat, 10% boiler, 200 m<sup>3</sup> water storage

• CHP with aquifer storage: 100% CHP heat, 60% heat recovery, 33% stored heat

 $\eta_c$  (Biogas) = 0.62 (compare combined cycle plant  $\eta_{el.}$  = 0.59 and  $\eta_{th.}$  = 0.03) [Lüking 2011]

- **High-Temperature Underground Heat Storage:** Good geology and groundwater chemistry (modeled by PHREEQ) allow storage of ~ 90 °C hot water from biomethane-chp and ~ 1000m<sup>2</sup> solarthermal
- Total cost ~2 Mio. € (150.000 m<sup>3</sup> water-eq.)
- 1/40 of above-ground storage cost
- With 80 % subsidies for the investment:
  - ROI ~ 5-10 years (50 years lifespan) ROI mainly from biomethane subsidies Electricity prices otherwise too low
  - Maybe power-to-heat for additional ROI





Climate-neutral university and Bockelsberg district (district heating network, TRNSYS, DOE.2E and FeFlow models): Biomethane since 2013, 30 % lower cost due to subsidies (savings will be used for more measures).

|                                    | w/o<br>ATES | with<br>ATES | $f_{EM}$    | w/o<br>ATES             | with<br>ATES            |
|------------------------------------|-------------|--------------|-------------|-------------------------|-------------------------|
| Biomethane<br>(CHP)                | 16.6 GWh    | 23.3 GWh     | 80 g/kWh    | 1,328 t                 | 1,864 t                 |
| Natural gas<br>(vessels)           | 3.4 GWh     | 0.7 GWh      | 245 g/kWh   | 833 t                   | 172 t                   |
| Electricity<br>production<br>(CHP) | 6.4 GWh     | 9.2 GWh      | - 821 g/kWh | - 5,254 t               | - 7,553 t               |
| Electricity consumption            | 2.7 GWh     | 2.7 GWh      | 5 g/kWh     | 14 t                    | 14 t                    |
| (campus, renewable)                | 0.55 GWh PV | 0.55 GWh PV  | 80 g/kWh    | 44 t                    | 44 t                    |
| Cars and business trips            |             |              |             | 599 t                   | 599 t                   |
| other                              |             |              |             | $\approx 800 \text{ t}$ | $\approx 800 \text{ t}$ |
| Balance                            |             |              |             | -1,636 t                | -4,060 t                |





### THINKING GREEN GERMANY SEEKS SUSTAINABILITY

PAGE7 | EDUCATION



Dr. Oliver Opel, Prof. Dr.-Ing. Wolfgang Ruck, Dipl.-Ing. Karl F. Werner, Dipl.-Uwiss. Irmhild Brüggen