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Abstract 

Empirical models for intensive or extensive margins of trade that relate measures of exports 

to firm characteristics are usually estimated by variants of (generalized) linear models. 

Usually, the firm characteristics that explain these export margins enter the empirical model 

in linear form, sometimes augmented by quadratic terms or higher order polynomials, or 

interaction terms, to take care or test for non-linear relationships. If these non-linear 

relationships do matter and if they are ignored in the specification of the empirical model this 

leads to biased results. Researchers, however, can never be sure that all possible non-linear 

relationships are taken care of in their chosen specifications. This note uses for the first time 

the Kernel-Regularized Least Squares (KRLS) estimator to deal with this issue in empirical 

models for margins of exports. KRLS is a machine learning method that learns the functional 

form from the data. Empirical examples show that it is easy to apply and works well. 

Therefore, it is considered as a useful addition to the box of tools of empirical trade 

economists. 
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1. Motivation 
 

Empirical models for  the intensive or extensive margins of trade that relate measures 

of exports to firm characteristics are usually estimated by variants of (generalized) 

linear models, including workhorse methods like ordinary least squares (for example, 

to explain the number of different countries a firm exports to), fractional logit (to take 

care of the fact that many firms do not export and, therefore, the share of exports in 

total sales is a variable with a probability mass at zero) or probit (for dichotomous 

variables like exporting or not). Usually, the firm characteristics that explain these 

export margins enter the empirical model in linear form, sometimes augmented by 

quadratic terms (like firm size and firm sized squared) or higher order polynomials, or 

interaction terms, to take care or test for non-linear relationships. If these non-linear 

relatioships do matter and if they are ignored in the specification of the empirical 

model this leads to biased results. 

Researchers, however, can never be sure that all possible non-linear 

relationships are taken care of in their chosen specifications, because the number of 

polynomials and interaction effects grows exponentially when the number of firm 

characteristics included in the empirical models for the trade margins increases. One 

way out is the use of artificial neural networks. It is known from any textbook 

treatment of neural network models that they have a feature that is known as the 

“universal approximation property”. Properly designed neural networks can 

approximate any nonlinear relationship – and they will spot it in the data. The main 

disadvantage of this class of models for applications in economics is the impossibility 

of performing standard statistical inference for estimates of the model’s parameters 

(see Lo (1994) for a short introductory exposition).  
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A second way out is the use of non-parametric regression, an appropriate 

alternative to standard regression models when we are unsure of the underlying 

functional form (see Henderson and Parameter (2015) for a textbook treatment). One 

problem that makes the application of non-parametric regression models infeasible in 

the context of the estimation of empirical models for margins of exports is that they 

suffer from what is known as the “curse of dimensionality”. Non-parametric 

regression models with a large number of control variables – and this includes all 

models with a set of dummy variables that control for industries or countries – are 

infeasible to estimate (see Cameron and Trivedi (2022), p.1497).  

This paper contributes to the literature by using kernel-based regularized 

least-squares (KRLS), introduced in Hainmueller and Hazlett (2014) and Ferwerda, 

Hainmueller and Hazlett (2017), and outlined in section 2 below. KRLS uses a 

machine learning approach to learn the functional form from the data. In doing so, it 

protects against misspecification that leads to biased estimates. To the best of my 

knowledge KRLS has not been used before to estimate empirical models for margins 

of trade, and it has been used in the economics literature hitherto by Minviel and Ben 

Bouheni (2022) only in a study of the impact of research and development on 

economic growth with macro data. 

To demonstrate the usefulness of the method for the estimation of intensive 

and extensive margins of exports this paper presents results from a study that 

replicates estimates reported in two papers of mine (Wagner 2001, Wagner 2023). 

To anticipate the most important results, KRLS works fine for empirical models 

with continuous, fractional, and dichotomous endogenous variables and control 

variables that are continuous, dichotomous, or dummy variables for industries or 

countries. In all three examples considered here the big picture from the original 

parametric models and from the models estimated by KRLS is the same. In several 
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cases, however, the estimated average marginal effects from both models differ. 

These differences can be explained by the fact that the parametric model imposes a 

restrictive functional form in the shape of the estimated relationships, while KRLS 

estimated this relationship without imposing a functional form. Furthermore, KRLS 

reveals that the marginal effects are not constant – they are heterogeneous and tend 

to vary widely across the covariate space.  

The rest of the paper is organized as follows. Section 2 outlines the KRLS 

estimator. Section 3 compares the original results from standard regression models 

for extensive and intensive margins of exports with the results from KRLS 

regressions. Section 4 concludes. 

 

2. Kernel-Regularized Least Squares (KRLS) – A short outline 

While a comprehensive discussion of the Kernel-Regularized Least Squares (KRLS) 

estimator is far beyond the scope of this applied note, a short outline of some of the 

important features and characteristics might help to understand why this estimator 

can be considered as an extremely helpful addition to the box of tools of empirical 

trade economists. For any details the reader is referred to the original papers by 

Hainmueller and Hazlett (2014) and Fernwerda, Hainmueller and Hazlett (2017). 

 The main contribution of the KRLS estimator is that it allows the researcher to 

estimate regression-type models without making any assumption regarding the 

functional form (or doing specification search to find the best fitting functional form). 

As detailed in Hainmueller and Hazlett (2014) the method constructs a flexible 

hypothesis space using kernels as radial basis functions and then finds the best-

fitting surface in this space by minimizing a complexity-penalized least squares 

problem. Ferwerda, Hainmueller and Hazlett (2017) point out that the KRLS method 

can be thought of in the “similarity-based view” in two stages. In the first stage, it fits 
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functions using kernels, based on the assumption that there is useful information 

embedded in how similar a given observation is to other observations in the dataset. 

In the second stage, it utilizes regularization, which gives preference to simpler 

functions (see Ferwerda, Hainmueller and Hazlett (2017), p.3).  

The KRLS thus uses a machine learning approach to learn the functional form 

from the data. In doing so, it protects against misspecification that leads to biased 

estimates. Contrary to other methods mentioned in section 1 above KRLS allows for 

interpretability and inference in ways similar to the usual regression models – this is a 

great advantage over artificial neural networks - and it does not suffer from the curse 

of dimensionality, so it can deal with models that include many covariates and sets of 

dummy variables that control for industries or countries – a great advantage over 

nonparametric regression methods. 

 KRLS works well both with continuous outcomes and with binary outcomes. It 

is easy to apply in Stata using the krls program provided in Ferwerda, Hainmueller 

and Hazlett (2017). Instead of doing a tedious specification search that does not 

guarantee a successful result, users simply pass the outcome variable and the matrix 

of covariates to the KRLS estimator which then learns the target function from the 

data. As shown in Hainmueller and Hazlett (2014), the KRLS estimator has desirable 

statistical properties, including unbiasedness, consistency, and asymptotic normality 

under mild regularity conditions. An additional advantage of KRLS is that it provides 

closed-form estimates of the pointwise derivatives that characterize the marginal 

effect of each covariate at each data point in the covariate space (see Ferwerda, 

Hainmueller and Hazlett (2017), p. 11). These estimates can be used to examine the 

heterogeneity of the marginal effects. 

Therefore, KRLS is suitable to estimate empirical models when the correct 

functional form is not known for sure – which is usually the case because we do not 
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know which polynomials or interaction terms matter for correctly modelling the 

relation between the covariates and the outcome variable. 

 

3. KRLS in action: Replications of three empirical models for margins of 

exports 

To see what we can learn from an application of the KRLS estimator we will have a 

close look at the results of estimates of three empirical models for different margins 

of exports taken from the literature that use different sets of firm-level data and three 

standard econometric methods, namely fractional logit (to estimate the share of 

exports in total sales, a fractional variable with a probability mass at zero due to a 

large number of non-exporting firms), probit (to estimate a model of participation in 

exports, a dichotomous variable that takes on the value of one or zero), and ordinary 

least squares (to estimate the number of firms’ export destination countries, a 

continuous variable). While a discussion of the empirical models, the data and 

variables included and the theoretical hypotheses tested are beyond the scope of this 

short applied note and can be found in the original papers by Wagner (2001, 2023), 

we concentrate on a comparison of the results from the original methods used and 

from the alternative KRLS approach. 

 

3.1 Empirical model for share of exports in total sales 

Table 1 reports results for an empirical model for the share of exports in total sales, 

defined as a fraction between zero and one. This intensive margin of exports was 

estimated in Wagner (2001) using the fractional logit model introduced by Papke and 

Wooldridge (1996) to deal with fractional variables with a probability mass at zero. 

Results in column 1 report the estimated average marginal effects (and its p-values) 

of the nine firm characteristics included in the empirical model. Note that this model 
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includes Firm size (the number of employees) and Firm size squared to take care of 

the positive but decreasing effect of the number of employees on the share of 

exports in total sales. Furthermore, the model includes a set of 15 industry dummy 

variables as control variables.  

 

[Table 1 near here] 

 

 Results for the average marginal effects estimated by KRLS (and its p-values) 

are reported in column 2 of table 1. A comparison of these estimates and the 

estimates reported in column 1 reveal that the signs are identical and the levels of 

significance are of a similar order of magnitude, so the big picture revealed by the 

two models is identical. 

The estimated average marginal effects are of the same order of magnitude in 

five out of nine cases. KRLS estimates of average marginal effects are smaller for 3 

variables and larger for one. The difference in the size of the average marginal 

effects can be explained by the fact that the parametric model in column 1 imposes a 

restrictive functional form in the shape of the estimated relationships, while KRLS 

estimated this relationship without imposing a functional form. 

 Note that KRLS was not “told” in advance to include a non-linear term (i.e. the 

squared number of employees). Note further that the inclusion of the 15 industry 

dummy variables does not pose a problem for KRLS, illustrating that this estimator is 

not hurt by the curse of dimensionality. 

 An additional advantage of KRLS compared to the parametric models used in 

the original estimation is that it provides closed-form estimates of the pointwise 

derivatives that characterize the marginal effect of each covariate at each data point 

in the covariate space. (see Ferwerda, Hainmueller and Hazlett (2017), p. 11). The 
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last three columns of table 1 report the marginal effects estimated by KRLS at the 1st 

quartile, at the median, and at the 3rd quartile. We can clearly see the heterogeneity 

in the marginal effects. The estimated marginal effects differ widely over the quartiles 

and tend to increase for all variables considered here. This shows the nonlinearity 

and heterogeneity of the relationship between the covariates and the share of 

exports in total sales. 

 

3.2 Empirical model for export participation 

Table 2 reports results for an empirical model for the participation in exports. This 

extensive margin of exports was estimated in Wagner (2023) using the probit model 

to deal with the dichotomous character of the dependent variable. Results in column 

1 report the estimated average marginal effects (and its p-values) of the four firm 

characteristics included in the empirical model. Furthermore, the model includes a set 

of 26 country dummy variables as control variables.  

 

[Table 2 near here] 

 

 Results for the average marginal effects estimated by KRLS (and its p-values) 

are reported in column 2 of table 2. A comparison of these estimates and the 

estimates reported in column 1 reveals that – like in the first example looked at above 

- the signs are identical and the levels of significance are of the same order of 

magnitude, so the big picture revealed by the two models is again identical. 

The estimated average marginal effects are of the same order of magnitude in 

three out of four cases. KRLS estimates of average marginal effects are considerably 

larger for firm size, which is due to an inappropriate imposition of a linear functional 

form of the relationship between firm size and export participation. Again, the 
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inclusion of a large set of (country) dummy variables does not pose a problem for 

KRLS. 

 The last three columns of table 2 report the marginal effects estimated by 

KRLS at the 1st quartile, at the median, and at the 3rd quartile. Again we can clearly 

see the heterogeneity in the marginal effects. The estimated marginal effects differ 

widely over the quartiles and tend to increase for all variables considered here, 

showing nonlinearity and heterogeneity of the relationship between the covariates 

and the probability of export participation. 

 

3.3 Empirical model for number of export destinations 

Finally, table 3 reports results for an empirical model for the number of export 

destination countries of firms originally estimated in Wagner (2023) using ordinary 

least squares (OLS). . Results in column 1 report the estimated regression 

coefficients (and its p-values) of the four firm characteristics included in the empirical 

model. Furthermore, the model includes again a set of 26 country dummy variables 

as control variables.  

 

[Table 3 near here] 

 

 Results for the average marginal effects estimated by KRLS (and its p-values) 

are reported in column 2 of table 3. A comparison of these estimates and the 

estimates reported in column 1 again reveals that the signs are identical and the 

levels of significance are the same, too, so the big picture shown by the two models 

is identical, and the same holds for the estimated average size of the effects here. 

Again, the inclusion of a large set of (country) dummy variables does not pose a 

problem for KRLS. 
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 The last three columns of table 3 report the marginal effects estimated by 

KRLS at the 1st quartile, at the median, and at the 3rd quartile. Again we can clearly 

see the heterogeneity in the marginal effects. The estimated marginal effects differ 

widely over the quartiles and tend to increase for all variables considered here, 

showing nonlinearity and heterogeneity of the relationship between the covariates 

and the number of export destination. 

 

3.4 Summary of findings from three examples 

The bottom line, then, is that in all three examples considered here the big picture 

from the original parametric models and from the models estimated by KRLS is the 

same. In several cases, however, the estimated average marginal effects from both 

models differ widely. These differences can be explained by the fact that the 

parametric model in column 1 imposes a restrictive functional form in the shape of 

the estimated relationships, while KRLS estimated this relationship without imposing 

a functional form. Furthermore, KRLS reveals that the marginal effects are not 

constant – they are heterogeneous and tend to vary widely across the covariate 

space.  

 

4. Concluding remarks 

The experience from the three applications of KRLS in the estimation of empirical 

models for various margins of exports can be summarized as follows: KRLS works 

fine for empirical models with continuous, fractional, and dichotomous endogenous 

variables and control variables that are continuous, dichotomous, or dummy variables 

for industries or countries. In all three examples considered here the big picture from 

the original parametric models and from the models estimated by KRLS is the same. 

In several cases, however, the estimated average marginal effects from both models 
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differ widely because the parametric model imposes a restrictive functional form in 

the shape of the estimated relationships, while KRLS does not. Furthermore, KRLS 

reveals that the marginal effects are not constant – they are heterogeneous and tend 

to vary widely across the covariate space.  

 That said, given the ease of use thanks to the Stata program krls provided 

by Ferwerda, Hainmueller and Hazlett (2017) I suggest that KRLS should be 

considered as a useful addition to the box of tools of empirical trade economists. 

Even if the three examples considered here do not reveal that a replication using 

KRLS produces completely different results compared to the parametric models used 

in the original papers – which is good news for me as the author of these papers – it 

might well be the case that this will happen in future applications. 
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Table 1: Empirical model for share of exports in total sales 
 
__________________________________________________________________________________________________________________________________ 
 
Method     GLM    KRLS 
                                                   Average marginal effects Average marginal effect  P25  P50  P75 
 
__________________________________________________________________________________________________________________________________ 
 
Firm size     0.0000531   0,000035    0.000025 0.000035           0.000047 
(Number of employees)   (0.001)    (0.000) 
 
Branch plant status    0.0496    0.0490     0.0293  0.0561  0.0742 
(Dummy; 1 = firm ist a branch plant)  (0.002)    (0.010) 
 
Craft shop     -0.093    -0.040     -0.0515  -0.0382  -0.0252 
(Dummy; 1 = firm part of craft sector)  (0.000)    (0.005) 
 
Percentage of jobs demanding   0.0016    0.0020     0.000345 0.001679 0.00336 
a university or polytech degree   (0,033)    (0.042) 
 
R&D/sales ratio greater zero and  0.0703    0.0412     0.0269  0.0424  0.0564 
Less than 3.5 percent    (0.000)    (0,004) 
 
R&D/sales ratio between 3.5 and less  0.0882    0.0818     0.0579  0.0839  0.10790 
han 8.5 percent     (0.000)    (0.000) 
 
R&D/sales ratio equal to 8.5 percent  0.0790    0.0675     0.0280  0.0839  0.1273 
or more     (0.001)    (0.010) 
 
Patents      0.0464    0.0750     0.0498  0.0817  0.0938 
(Dummy; 1 = firm registered   (0.002)    (0.000) 
at least one patent) 



14 
 

Product innovation    0.0319    0.0355     0.0195  0.0326  0.0484 
(Dummy; 1 = firm introduced at least  0.016    (0.007) 
one new product) 
 
15 industry dummies    included   included 
 
Number of cases     768    768 
 
__________________________________________________________________________________________________________________________________ 
 
Note: GLM reports average marginal effects from a model estimated by fractional logit. KRLS reports average marginal effects and marginal effects at the 25th, 
50th and 75th percentile estimated by kernel-based regularized least squares. P-values are reported in parentheses.  For details, see text. 
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Table 2: Empirical model for export participation 
 
__________________________________________________________________________________________________________________________________ 
 
Method     Probit    KRLS 
                                                   Average marginal effects Average marginal effect  P25  P50  P75 
 
__________________________________________________________________________________________________________________________________ 
 
Big data analytics    0.112    0.111     0.0386  0.1087  0.1891 
(Dummy; 1 = yes)    (0.000)    (0.003) 
 
Firm age     0.0015    0.0014     0.00011 0.0010  0.0025 
(years)      (0.001)    (0.005) 
 
Firm size     0.00034   0.00082    0.00066 0.00083 0.0010  
(Number of employees)   (0.000)    (0.000) 
 
Patent      0.212    0.186     0.1025  0.19990 0.2533 
(Dummy; 1 = yes)    (0.000)    (0.000) 
 
26 country dummies    included   included 
 
Number of cases     2,355    2,355 
 
__________________________________________________________________________________________________________________________________ 
 
Note: Probit reports average marginal effects from a model estimated by ML Probit. KRLS reports average marginal effects and marginal effects at the 25th, 50th 
and 75th percentile estimated by kernel-based regularized least squares. P-values are reported in parentheses.  For details, see text. 
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Table 3: Empirical model for number of export destinations 
 
__________________________________________________________________________________________________________________________________ 
 
Method     OLS    KRLS 
                                                   Regression coefficient  Average marginal effect  P25  P50  P75 
 
__________________________________________________________________________________________________________________________________ 
 
Big data analytics    0.7165    0.5116     0.3295  0.5262  0.7602 
(Dummy; 1 = yes)    (0.000)    (0.000) 
 
Firm age     0.0110    0.0086     0.0059  0.0089  0.0119 
(years)      (0.000)    (0.000) 
 
Firm size     0.0007    0.0011     0.00094 0.00111 0.0013  
(Number of employees)   (0.003)    (0.000) 
 
Patent      0.9563    0.8274     0.6125  0.8796  1.0400 
(Dummy; 1 = yes)    (0.000)    (0.000) 
 
26 country dummies    included   included 
 
Number of cases     1,520    1,520 
 
__________________________________________________________________________________________________________________________________ 
 
Note: OLS reports the estimated regression coefficients from a linear model. KRLS reports average marginal effects and marginal effects at the 25th, 50th and 
75th percentile estimated by kernel-based regularized least squares. P-values are reported in parentheses.  For details, see text. 
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