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Abstract 

 

The use of advanced technologies like artificial intelligence, robotics, or smart devices will go 

hand in hand with higher productivity, higher product quality, and lower trade costs. Therefore, 

it can be expected to be positively related to export activities. This paper uses firm level data 

for manufacturing enterprises from the 27 member countries of the European Union collected 

in 2025 to shed further light on this issue by investigating the link between the use of advanced 

technologies and extensive margins of exports. Applying a new machine-learning estimator, 

Kernel-Regularized Least Squares (KRLS), which does not impose any restrictive assumptions 

for the functional form of the relation between margins of exports, use of advanced 

technologies, and any control variables, we find that firms which use more advanced 

technologies do more often export and do export to more different destinations.  
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1. Motivation 

 

The use of advanced technologies like artificial intelligence, cloud computing, or 

robotics can be expected to go hand in hand with higher productivity (see e.g. 

Acemoglu, Lelarge and Restrepo (2020), Chen and Volpe Martincus (2022), 

DeStefano, Kneller and Timmis (2025), Deng, Plümpe and Stegmaier (2024)). 

According to a large empirical literature that uses firm level data from many different 

countries productivity and export activities in firms are positively related (Ferencz, 

López González and Garcia (2022), Wagner (2007)). Furthermore, the use of these 

advanced technologies can be expected to lower trade costs (see e.g. Ferencz, López 

González and Garcia (2022), López González, Sorescu and Kaynak (2023), Meltzer 

(2018)). Therefore, the use of advanced technologies can be expected to be positively 

related to export activities of firms that use these technologies. 

Empirical evidence on the link between the use of digital technologies and 

export activities of firms is supporting this view. Wagner (2025) uses firm level data for 

manufacturing enterprises from the 27 member countries of the European Union 

collected in 2020 to investigate the link between the use of digital technologies and 

extensive margins of exports. He finds that firms which use more digital technologies 

do more often export, do more often export to various destinations all over the world, 

and do export to more different destinations.  

Evidence reported in the literature, however, is based on firm level data that are 

several years old. For example, the data used in Wagner (2025) were collected at the 

beginning of 2020 – before the Corona pandemic hit the world, and in a time when 

artificial intelligence models like ChatGPT or Google Gemini were not available at your 

fingertips on the laptops but were considered science fiction (if thought of at all). 
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A fresh look at recent data can help to learn more on the links between the use 

of todays advanced technologies and the export activities of firms. This paper 

contributes to the literature by using firm level data for manufacturing enterprises from 

the 27 member countries of the European Union taken from the Flash Eurobarometer 

559 survey conducted early in 2025 to investigate the link between the advanced 

technologies intensity of a firm (measured by the number of different advanced 

technologies adopted in a firm) and extensive margins of exports (export participation 

and number of export destinations). Furthermore, it looks at the role of each of 10 

different advanced technologies in this link.  

Applying a new machine-learning estimator, Kernel-Regularized Least Squares 

(KRLS), which does not impose any restrictive assumptions for the functional form of 

the relation between margins of exports, use of advanced technologies, and any 

control variables, we find that firms which use more advanced technologies do more 

often export and do export to more different destinations. The estimated digitalization 

premium for extensive margins of exports is statistically highly significant after 

controlling for firm size, firm age, innovations, and country. Extensive margins of 

exports and the use of advanced technologies are positively related. 

The rest of the paper is organized as follows. Section 2 introduces the data used 

and discusses the export activities that are looked at. Section 3 reports results from 

the econometric investigation. Section 4 concludes. 

 

2. Data and discussion of variables 

 

The firm level data used in this study are taken from the Flash Eurobarometer 559 

survey conducted between February and April 2025. Note that information on export 

activities relates to the year 2024. We use data for firms from the 27 member states of 
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the European Union in 2025. The sample covers 1,587 firms from manufacturing 

industries (included in NACE section C); unfortunately, no more details on the industry 

affiliation of the firms are revealed in the data. The numbers of firms by country are 

reported in the appendix table. 

In the survey firms were asked in question Q14 which of the following digital 

technologies, if any, they have adopted to date: Artificial intelligence, e.g. machine 

learning, Large Language Models.; Cloud computing, i.e. storing and processing files 

or data on remote servers hosted on the internet and big data analytics; Robotics, i.e. 

robots used to automate processes for example in construction or design, etc.; Internet 

of Things, e.g. smart sensors; Digital technologies for security, cybersecurity; 

Blockchain; Biotechnology, e.g. genomics, gene therapy, biofuel; Micro- and 

nanoelectronics and photonics; Advanced material, e.g. polymers; Clean and 

resource-efficient technologies. Firms that answered in the affirmative are classified as 

users of the respective advanced technology. Descriptive evidence is reported in the 

upper panel of Table 1. 

[Table 1 near here] 

Wile 429 (or about a quarter of all firms) did not use any of these technologies, 

the share of users of the other advanced technologies varies widely – from five percent 

or less using Blockchain, Biotechnology or Micro- and nanoelectronics to 37 percent 

using Digital technologies for security, cybersecurity and 49 percent using Cloud 

computing.  

On average, firms use 2.04 different advanced technologies. As documented in 

Table 2 most adopters of advanced technologies apply between one and three 

different technologies, while the share of “power users” that apply six or more tiny. This 

information is used to construct an index of Advanced technology intensity of a firm 

that takes on values from zero (for firms without the application of any advanced 
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technology) to ten (for firms that use all ten technologies mentioned). The number of 

firms and the share in all firms in the sample for each value of advanced technology 

intensity is listed in Table 2. 

 

[Table 2 near here] 

 

In the empirical study we look at two measures of export activity of firms:1 

First, firms were asked in question Q8_1 whether they exported any goods (or 

not) in 2024. Firms are classified as exporters or non-exporters based thereon. 

Descriptive evidence is reported in Table 1, showing a share of 57.0 percent of 

exporters. 

Second, firms were asked in questions Q8_2 to Q8_8 whether they exported 

goods in 2024 to the following destinations: Other EU countries; other European 

countries outside the EU (e.g UK, Russia); North America; Latin America and the 

Carribian; China; rest of Asia and the Pacific; Middle East and Africa. From the 

evidence reported for exports to the seven destinations mentioned for each exporting 

firm the number of different destinations exported to is calculated. The share of firms 

by number of export destinations is reported in Table 3. Not surprisingly, most 

exporters serve one or two destinations only, but there are some firms that export to 

more (or even all) destinations.  

  

[Table 3 near here] 

 

 
1 Note that both measures looked at here refer to extensive margins of exports; information on intensive margins 
(share of exports in total sales) are not available in the data used. 
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In the empirical investigation of the link between the digitalization intensity of 

firms and extensive margins of exports we control for three firm characteristics that are 

known to be linked with exports: firm age (measured in years, based on the answer 

given to question DX2a), firm size (measured as the number of employees – excluding 

the owners - at the time of the survey; see question DX3a), and whether the firms has 

introduced any kind of innovation (e.g., new product, new production process, new 

organization of management, etc.) over the last 12 months or not (see question Q12-

9).2 Descriptive statistics are reported in the bottom panel Table 1. 

Furthermore, in the empirical investigations the country of origin of the firms is 

controlled for by including a full set of country dummy variables.  

 

3.Advanced technology premia for export activities  

 

To test for the difference in the extensive margins of exports mentioned in section 2 

between firms with various intensities in the use of advanced technologies, and to 

document the size of these differences, an empirical approach is applied that modifies 

a standard approach used in hundreds of empirical investigations on the differences 

between exporters and non-exporters that has been introduced by Bernard and Jensen 

(1995, 1999). Studies of this type use data for firms to compute the so-called exporter 

premium, defined as the ceteris paribus percentage difference of a firm characteristic 

- e.g. labour productivity - between exporters and non-exporters.  

Here we look at differences between firms with various intensities of the use of 

advanced technologies listed above (instead of differences between exporters and 

non-exporters) and are interested in the existence and size of an advanced 

 
2 Given that these variables are included as control variables only, we do not discuss them in detail here. Suffice 
it to say that numerous empirical studies show a link between these firm characteristics and export performance.  
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technologies premium in export activities (instead of an exporter premium in various 

forms of firm performance like productivity). The empirical model used can be written 

in general as 

 

[1]   Export activityi = f [ Use of advanced technologyi ,  Controli ] 

 

where i is the index of the firm, Export activity is a variable for the type of export activity 

(listed in the second panel of Table 1), Use of advanced technology is the value of the 

variable listed in the first panel of Table 1, and Control is a vector of control variables 

(that consists of measures of firm age, firm size, and innovations, and dummy variables 

for countries). The advanced technology premium is computed as the estimated 

average marginal effects of the variable that indicates the respective use of advanced 

technologies. 

In standard parametric models the firm characteristics that explain the export 

margins enter the empirical model in linear form. This functional form which is used in 

hundreds of empirical studies for margins of exports, however, is rather restrictive. If 

any non-linear relationships (like quadratic terms or higher order polynomials, or 

interaction terms) do matter and if they are ignored in the specification of the empirical 

model this leads to biased results. Researchers, however, can never be sure that all 

possible relevant non-linear relationships are taken care of in their chosen 

specifications. Therefore, this note uses the Kernel-Regularized Least Squares (KRLS) 

estimator to deal with this issue. KRLS is a machine learning method that learns the 

functional form from the data. It has been introduced in Hainmueller and Hazlett (2014) 

and Ferwerda, Hainmueller and Hazlett (2017), and used to estimate empirical models 

for margins of trade for the first time in Wagner (2026). 
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While a comprehensive discussion of the Kernel-Regularized Least Squares 

(KRLS) estimator is far beyond the scope of this applied note, a short outline of some 

of the important features and characteristics might help to understand why this 

estimator can be considered as an extremely helpful addition to the box of tools of 

empirical trade economists (se Wagner (2026)). For any details the reader is referred 

to the original papers by Hainmueller and Hazlett (2014) and Fernwerda, Hainmueller 

and Hazlett (2017). 

 The main contribution of the KRLS estimator is that it allows the researcher to 

estimate regression-type models without making any assumption regarding the 

functional form (or doing a specification search to find the best fitting functional form). 

As detailed in Hainmueller and Hazlett (2014) the method constructs a flexible 

hypothesis space using kernels as radial basis functions and then finds the best-fitting 

surface in this space by minimizing a complexity-penalized least squares problem. 

Ferwerda, Hainmueller and Hazlett (2017) point out that the KRLS method can be 

thought of in the “similarity-based view” in two stages. In the first stage, it fits functions 

using kernels, based on the assumption that there is useful information embedded in 

how similar a given observation is to other observations in the dataset. In the second 

stage, it utilizes regularization, which gives preference to simpler functions (see 

Ferwerda, Hainmueller and Hazlett (2017), p.3).  

 KRLS works well both with continuous outcomes and with binary outcomes. It 

is easy to apply in Stata using the krls program provided in Ferwerda, Hainmueller 

and Hazlett (2017). Instead of doing a tedious specification search that does not 

guarantee a successful result, users simply pass the outcome variable and the matrix 

of covariates to the KRLS estimator which then learns the target function from the data. 

As shown in Hainmueller and Hazlett (2014), the KRLS estimator has desirable 

statistical properties, including unbiasedness, consistency, and asymptotic normality 
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under mild regularity conditions. An additional advantage of KRLS is that it provides 

closed-form estimates of the pointwise derivatives that characterize the marginal effect 

of each covariate at each data point in the covariate space (see Ferwerda, Hainmueller 

and Hazlett (2017), p. 11).  

Therefore, KRLS is suitable to estimate empirical models when the correct 

functional form is not known for sure – which is usually the case because we do not 

know which polynomials or interaction terms matter for correctly modelling the relation 

between the covariates and the outcome variable. 

In a first step we measure the use of advanced technologies by the index of 

advanced technology intensity that takes on values between 0 and 10 (see the 

discussion in section 2 and Table 2). Results for an application of KRLS to the models 

for both extensive margins of exports are reported in Table 4. 

 

[Table 4 near here] 

 

The big picture that is shown is crystal clear. Higher values of the index go hand 

in hand with higher probabilities of export participation, and with exporting to a larger 

number of destinations. Each estimated premium is statistically highly significant 

ceteris paribus after controlling for firm age, firm size, innovations, and country of origin 

of the firms. 

To shed more light on the relation between the use of advanced technologies 

and extensive margins of exports in a second step the empirical models were 

estimated with variables that control for the use of each of the ten technologies (listed 

in the first panel of Table 1) separately. Results are reported in Table 5. 
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 [Table 5 near here] 

 

From column 1 of Table 5 it can be concluded that five of the ten technologies 

are not related with export participation – the estimated average marginal effects can 

not be considered to be statistically significantly different from zero at a usual level. 

This holds for the seldom used Blockchain, Biotechnology, and Micro and -

nanoelectronics, but also for the more commonly used Internet of things and Clean 

technologies. The overall positive relation between the use of advanced technologies 

and export participation is driven by the other five technologies, i.e. Artificial 

intelligence, Cloud computing, Robotics, Digital technology for security, and Advanced 

materials.  

Results reported in column 2 of Table 5 indicate the positive link between the 

use of advance technologies and the number of different markets served by exporters 

is mainly driven by using Robotics and the Internet of things. The estimated average 

marginal effects of all other advanced technologies are not statistically significantly 

different from zero at a conventional level. 

 

4. Concluding remarks  

 

This study finds that manufacturing firms from 27 EU member countries that use 

advanced technologies more intensively in 2025 are more often exporters and do 

export to a larger number of destinations.  

Does this study imply that to be successful in export markets, firms should use 

advanced technologies? Or that using advanced technologies will help the firms to be 

successful as an exporter? Can the results that are reported here for the use of 
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different technologies hint to especially important technologies (e.g. Robotics)? This is 

an open question (that is asked the same way when the exporter premium is 

discussed; see Wagner (2007)) because we do not know whether this premium is due 

to self-selection of exporting firms into the use of advanced technologies, or whether it 

is the effect of using advanced technologies.  

This issue cannot be investigated with the cross-section data at hand. To 

answer this important question longitudinal data for firms are needed that cover several 

years and that include a sufficiently large number of firms that switch the status 

between using various advanced technologies or not over time (in both directions). The 

jury is still out to find a generally accepted answer. 
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Table 1: Descriptive statistics 

Variable    Mean  Std. Dev.  Min  Max 
__________________________________________________________________________________ 
 
Artificial intelligence   0.1890  0.3917   0  1 
(Dummy; 1 = yes) 
Cloud computing   0.4908  0.5000   0  1 
(Dummy; 1 = yes)1 
Robotics    0.2281  0.4197   0  1 
(Dummy; 1 = yes) 
Internet of things   0.2602  0.4389   0  1 
(Dummy; 1 = yes) 
Digital tech. for security  0.3743  0.4841   0  1 
(Dummy; 1 = yes) 
Blockchain    0.0359  0.1861   0  1 
(Dummy; 1 = yes) 
Biotechnology    0.0504  0.2189   0  1 
(Dummy; 1 = yes) 
Micro- and nanoelectronics  0.0491  0.2162   0  1 
(Dummy; 1 = yes) 
Advanced materials   0.1361  0.3430   0  1 
(Dummy; 1 = yes) 
Clean technologies   0.2299  0.4210   0  1 
(Dummy; 1 = yes) 
 
Advanced technology intensity  2.0441  1.8705   0              10 
(Index; 0 – 10) 
 
---------------------------------------------------------------------------------------------------------------------------------- 
 
Exporter    0.570  0,495   0  1 
(Dummy; 1 = yes) 
 
 
Number of Export Destinations  1.307  1.621   0  7 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Firm Age (years)   33.54  32.65   0  325 
 
No. of Employees   136.53  460.67   1             11457 
 
Innovations    0.674  0.469   0       1 
(Dummy; 1 = yes) 
 
No. of Firms in Sample   1,587  
__________________________________________________________________________________ 
 
Source: Own calculation based on data from Flash Eurobarometer 559; for details, see text 
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Table 2: Share of Firms by Advanced Technology Intensity  
 
Advanced technology   Number of  Percent 
Intensity   Firms 
__________________________________________________________________________ 
 
0    429   27.03 
1    268   16.89 
2    314   19.79 
3    271   17.08 
4    142   8.95 
5    76   4.79 
6    46   2.90 
7    25   1.58 
8    10   0.63 
9    4   0.25 
10    2   0.13 
 
Total    1,587   100.0 
_________________________________________________________________________ 
 
Source: Own calculation based on data from Flash Eurobarometer 559; see text for details. 
 

 

Table 3: Share of Firms by Number of Export Destinations  
 
Number of    Number of  Percent 
Export Destinations  Firms 
______________________________________________________________________ 
 
0    682   42.97 
1    352   22.18 
2    272   17,14 
3    118   7.44 
4    72   4.54 
5    38   2.39 
6    25   1.58 
7    28   1.76 
 
Total    1,587   100.0 
_____________________________________________________________________ 
 
Source: Own calculation based on data from Flash Eurobarometer 559 
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Table 4: Advanced Technology Intensity and Extensive Margins of Exports:  
  Estimated Average Marginal Effects from Kernel-Regularized Least Squares 

__________________________________________________________________________________ 
 
   Advanced   Firm  Firm  Innovations            
   Technology  Age  Size  (Dummy;            
   Intensity  (Years)  (Number of 1 = yes) 
   (Index; 0 – 10)    Employees) 
Export margin 
__________________________________________________________________________________ 
 
Participation  0.0295   0.0004  0.000082 0.0721 
(Dummy; 1 = yes) [0.000]   [0.218]  [0.001]  [0.009] 
 
N of firms  1,587 
       
Number of  0.0654   0.0048  0.0011  0.2011 
Destinations  [0.001]   [0.001]  [0.000]  [0.101] 
(Index; 1 – 7) 
 
N of firms  905 
 
__________________________________________________________________________________ 
 
Note: All models include a complete set of country dummies; p-values are reported in parentheses. 
For details, see text. 
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Table 5:  Advanced Technologies  and Extensive Margins of Exports:  
    Estimated AverageMarginal Effects from Kernel-Regularized Least Squares 
 

 
    Export Participation  Number of Export Destinations 
    (Dummy; 1 = yes)  ((Index; 1 – 7) 
__________________________________________________________________________________ 
 
Artificial intelligence   0.049    -0.085  
(Dummy; 1 = yes)   [0.064]    [0.390] 
 
Cloud computing   0.037    0.124 
(Dummy; 1 = yes)1   [0.093]    [0.157] 
 
Robotics    0.079    0.222  
(Dummy; 1 = yes)   [0.002]    [0.017] 
 
Internet of things   -0.021    0.180  
(Dummy; 1 = yes)   [0.386]    [0.066] 
 
Digital tech. for security  0.065    0.066 
(Dummy; 1 = yes)   [0.004]    [0.453] 
 
Blockchain    -0.060    0.047    
(Dummy; 1 = yes)   [0.193]    [0.792] 
 
Biotechnology    -0.040    -0.033 
(Dummy; 1 = yes)   [0.334]    [0.853] 
 
Micro- and nanoelectronics  -0.017    0.252  
(Dummy; 1 = yes)   [0.687]    [0.114] 
 
Advanced materials   0.070    0.007  
(Dummy; 1 = yes)   [0.021]    [0.951] 
 
Clean technologies   0.039    0.065 
(Dummy; 1 = yes)   [0.125]    [0.503] 
 
Firm size    0.00005   0.0005 
(Number of employees)  [0.002]    [0.000] 
 
Firm age    0.00045   0.0047 
(years)     [0,126]    [0.000] 
 
Innovations    0.051    0.1651    
(Dummy; 1 = yes)   {0.023]    [0.082] 
  
Number of Firms   1,587    905 
__________________________________________________________________________________ 
 
Note: All models include a complete set of country dummies; p-values are reported in parentheses. 
For details, see text. 
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Appendix: Number of Firms by Country 
 
Country  Number of Firms  Percent 
_____________________________________________________________________ 
 
Austria   45    2.84 
Belgium  53    3.34 
Bulgaria  48    3.02 
Cyprus   26    1.64 
Czech Republic  60    3.78 
Germany  77    4.85 
Denmark  109    6.87 
Estonia   67    4.22 
Spain   59    3.72 
Finland   83    5.23 
France   59    3.72 
Greece   62    3.91 
Croatia   62    3.91 
Hungary  57    3.59 
Ireland   49    3.09 
Italy   66    4.16 
Lithuania  46                   2.90 
Luxembourg  24    1.51 
Latvia   60    3.78 
Malta   26    1.64 
Netherlands  53    3.34 
Poland   56    3.53 
Portugal  50    3.15 
Romania  56    3.53 
Sweden  69    4.35 
Slovenia  48    3.02 
Slovakia  69    4.35 
 
Total   1,587    100.0 
_______________________________________________________________________ 
 
Source: Own calculations based on data from Flash Eurobarometer 559 
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