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Abstract

The use of advanced technologies like artificial intelligence, robotics, or smart devices will go
hand in hand with, among others, higher productivity, higher product quality, more exports and
better chances to survive any crisis. Better firms tend to use advanced technologies.
Information on firm level determinants of adoption of these technologies, therefore, is important
to inform industrial policies. This paper uses firm level data for manufacturing enterprises from
38 countries collected in 2025 to shed further light on this issue by investigating the link
between the use of advanced technologies and firm characteristics. Applying a new machine-
learning estimator, Kernel-Regularized Least Squares (KRLS), which does not impose any
restrictive assumptions for the functional form of the relation between use of advanced
technologies, firm characteristics and any control variables, we find that firms which use
advanced technologies tend to be larger and more innovation orientated, while firm age does

not matter.
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1. Motivation

The use of advanced technologies like artificial intelligence, cloud computing, or
robotics can be expected to go hand in hand with higher productivity (see e.g.
Acemoglu, Lelarge and Restrepo (2020), Chen and Volpe Martincus (2022),
DeStefano, Kneller and Timmis (2025), Deng, Plimpe and Stegmaier (2024)).
According to a large empirical literature that uses firm level data from many different
countries productivity and export activities in firms are positively related (Ferencz,
Lopez Gonzélez and Garcia (2022), Wagner (2007)). Furthermore, the use of these
advanced technologies can be expected to lower trade costs (see e.g. Ferencz, Lopez
Gonzalez and Garcia (2022), Lopez Gonzalez, Sorescu and Kaynak (2023), Meltzer
(2018)). Therefore, the use of advanced technologies can be expected to be positively
related to export activities of firms that use these technologies (Wagner (2025))

The bottom line, then, is that the use of advanced technologies and various
dimensions of firm performance tend to be positively related. Good firms more often
use advanced technologies. Evidence reported in the literature, however, is based on
firm level data that are several years old. For example, the data used in Wagner (2025)
were collected at the beginning of 2020 — before the Corona pandemic hit the world,
and in a time when artificial intelligence models like ChatGPT or Google Gemini were
not available at your fingertips on the laptops but were considered science fiction (if
thought of at all).

A fresh look at recent data can help to learn more on the use of todays advanced
technologies. This paper contributes to the literature by using firm level data for
manufacturing enterprises from 38 countries taken from the Flash Eurobarometer 559

survey conducted early in 2025 to document the use of ten different types of advanced



technologies. Furthermore, it looks at the links between firm characteristics and the
use of advanced technologies. Applying a new machine-learning estimator, Kernel-
Regularized Least Squares (KRLS), which does not impose any restrictive
assumptions for the functional form of this relation we find that firms which use more
advanced technologies are larger and more innovation-oriented while firm age does
not matter.

The rest of the paper is organized as follows. Section 2 introduces the data used
and discusses the different advanced technologies and the firm characteristics that are
looked at. Section 3 reports results from the econometric investigation. Section 4

concludes.

2. Data and discussion of variables

The firm level data used in this study are taken from the Flash Eurobarometer 559
survey conducted between February and April 2025 in 38 countries. The sample used
covers 2,064 firms from manufacturing industries (included in NACE section C);
unfortunately, no more details on the industry affiliation of the firms are revealed in the
data. The numbers of firms by country are reported in the appendix table.

In the survey firms were asked in question Q14 which of the following digital
technologies, if any, they have adopted to date: Artificial intelligence, e.g. machine
learning, Large Language Models.; Cloud computing, i.e. storing and processing files
or data on remote servers hosted on the internet and big data analytics; Robotfics, i.e.
robots used to automate processes for example in construction or design, etc.; Internet
of Things, e.g. smart sensors; Digital technologies for security, cybersecurity;
Blockchain; Biotechnology, e.g. genomics, gene therapy, biofuel; Micro- and

nanoelectronics and photonics; Advanced material, e.g. polymers; Clean and



resource-efficient technologies. Firms that answered in the affirmative are classified as
users of the respective advanced technology. Descriptive evidence is reported in the
upper panel of Table 1.

[Table 1 near here]

Wile 562 (or about a quarter of all firms) did not use any of these technologies,
the share of users of the other advanced technologies varies widely — from six percent
or less using Blockchain, Biotechnology or Micro- and nanoelectronics to 38 percent
using Digital technologies for security, cybersecurity and 49 percent using Cloud
computing.

On average, firms use 2.09 different advanced technologies. As documented in
Table 2 most adopters of advanced technologies apply between one and three
different technologies, while the share of “power users” that apply six or more is tiny.
This information is used to construct an index of Advanced technology intensity of a
firm that takes on values from zero (for firms without the application of any advanced
technology) to ten (for firms that use all ten technologies mentioned). The number of
firms and the share in all firms in the sample for each value of advanced technology

intensity is listed in Table 2.

[Table 2 near here]

In the empirical investigation of the link between the use of advanced
technologies and firm characteristics three characteristics are considered: firm size
(measured as the number of employees — excluding the owners - at the time of the
survey; see question DX3a), firm age (measured in years, based on the answer given

to question DX2a), and innovation orientation of a firm (proxied by the fact whether the



firms has introduced any kind of innovation (e.g., new product, new production
process, new organization of management, etc.) over the last 12 months or not (see
question Q12-9).

The selection of these firm characteristics is motivated by the large literature on
the determinants of the adoption of advanced technologies (and limited by the
information available in the survey data at hand here). While a comprehensive survey
of this literature is far beyond the scope of this applied note, a short outline might be
helpful to motivate the inclusion of the selected characteristics.

Firm size is considered the most robust predictor of advanced technology
adoption. Reasons include economies of scale due to often involved high fixed costs
and easier access to internal and external financing which is critical given the high
sunk costs and uncertain returns of many projects related to the use of advanced
technology projects (see Acemoglu, Lelarge and Restrepo (2020)).

Firm age is found to be both positively (due to, e.g., easier access to finance for
long established older firms) and negatively (due to the “born digitals” effect that favors
the adoption of advanced technologies in younger firms) related to the use of advanced
technologies. Therefore, this is an open issue to be investigated in the data at hand.

Innovation orientation of a firm — or how open minded the owners and managers
of a firm are with a view to the adoption of new advanced technologies — is proxied
here by the introduction of any new products, new production processes, new ways to
organize the management, etc. over the last year. Such innovations are often found to
be positively related to the adoption of advanced technologies (see, e.g., Babina et al.
(2024)).

Descriptive statistics on these firm characteristics are reported in the bottom

panel of Table 1.



Furthermore, in the empirical investigations the country of origin of the firms is

controlled for by including a full set of country dummy variables.

3.Firm characteristics and use of advanced technologies

To test for the link between the firm characteristics mentioned in section 2 and the use
of advanced technologies, and to document the direction and the size of this link,

empirical models are used that can be written in general as

[11 Advanced technologyi = f [Firm characteristicsi, Controli]

where i is the index of the firm, Advanced technology is a dummy variable for the
respective type of technology (listed in the first panel of Table 1) or the value of the
index of advanced technology intensity, Firm characteristics is a vector including
measures of firm size, firm age, and innovations (listed in the second panel of Table
1), and Control is a vector of dummy variables for the 38 countries. The link between
a firm characteristic and technology use is computed as the estimated average
marginal effect of this characteristic.

In standard parametric models the variables that explain the use of advanced
technologies enter the empirical model in linear form. This functional form, however, is
rather restrictive. If any non-linear relationships (like quadratic terms or higher order
polynomials, or interaction terms) do matter and if they are ignored in the specification
of the empirical model this leads to biased results. Researchers, however, can never
be sure that all possible relevant non-linear relationships are taken care of in their
chosen specifications. Therefore, this note uses the Kernel-Regularized Least Squares

(KRLS) estimator to deal with this issue. KRLS is a machine learning method that



learns the functional form from the data. It has been introduced in Hainmueller and
Hazlett (2014) and Ferwerda, Hainmueller and Hazlett (2017), and used to estimate
empirical models for margins of trade for the first time in Wagner (2026).

While a comprehensive discussion of the Kernel-Regularized Least Squares
(KRLS) estimator is far beyond the scope of this applied note, a short outline of some
of the important features and characteristics might help to understand why this
estimator can be considered as an extremely helpful addition to the box of tools of
empirical economists (se Wagner (2026)). For any details the reader is referred to the
original papers by Hainmueller and Hazlett (2014) and Fernwerda, Hainmueller and
Hazlett (2017).

The main contribution of the KRLS estimator is that it allows the researcher to
estimate regression-type models without making any assumption regarding the
functional form (or doing a specification search to find the best fitting functional form).
As detailed in Hainmueller and Hazlett (2014) the method constructs a flexible
hypothesis space using kernels as radial basis functions and then finds the best-fitting
surface in this space by minimizing a complexity-penalized least squares problem.
Ferwerda, Hainmueller and Hazlett (2017) point out that the KRLS method can be
thought of in the “similarity-based view” in two stages. In the first stage, it fits functions
using kernels, based on the assumption that there is useful information embedded in
how similar a given observation is to other observations in the dataset. In the second
stage, it utilizes regularization, which gives preference to simpler functions (see
Ferwerda, Hainmueller and Hazlett (2017), p.3).

KRLS works well both with continuous outcomes and with binary outcomes. It
is easy to apply in Stata using the kr1s program provided in Ferwerda, Hainmueller
and Hazlett (2017). Instead of doing a tedious specification search that does not

guarantee a successful result, users simply pass the outcome variable and the matrix



of covariates to the KRLS estimator which then learns the target function from the data.
As shown in Hainmueller and Hazlett (2014), the KRLS estimator has desirable
statistical properties, including unbiasedness, consistency, and asymptotic normality
under mild regularity conditions.

An additional advantage of KRLS is that it provides closed form estimates of the
pointwise derivatives that characterize the marginal effect of each covariate at each
data point in the covariate space (see Ferwerda, Hainmueller and Hazlett (2017), p.
11).

Therefore, KRLS is suitable to estimate empirical models when the correct
functional form is not known for sure — which is usually the case because we do not
know which polynomials or interaction terms matter for correctly modelling the relation
between the covariates and the outcome variable.

In a first step we look at the use of each of the ten advanced technologies
separately. In a second step we investigate the link between the firm characteristic and
the index of advanced technology intensity. Results for KRLS regressions are reported

in Table 3.

[Table 3 near here]

The big picture that is shown is crystal clear. In line with findings from the
lliterature the average marginal effect of firm size and innovation is positive — larger
and more innovation-oriented firms are more often users of advanced technologies.
Firm age, on the other hand, does not matter at all here (except for the use of digital

technology for security).

The last three columns of table 3 report the marginal effects estimated by KRLS

at the 15t quartile, at the median, and at the 3™ quartile. We can clearly see the



heterogeneity in the marginal effects. The estimated marginal effects differ widely over
the quartiles. This shows the nonlinearity and heterogeneity of the relationship

between the covariates and the use of advanced technologies.

4. Concluding remarks

This study finds that manufacturing firms from 38 countries that use advanced
technologies in 2025 are larger and more innovation oriented than non-users, while
firm age does not matter here.

Does this study imply that industrial policy measures that intend to support the
application of advanced technologies should focus on larger and more innovation-
oriented firms? Or that using advanced technologies will help firms to grow and
become more innovation-oriented? This is an open question because we do not know
whether the larger size and the higher innovation-orientation of firms that use
advanced technologies is due to self-selection of these firms into the use of advanced
technologies, or whether it is the effect of using advanced technologies.

This issue cannot be investigated with the cross-section data at hand. To
answer this important question longitudinal data for firms are needed that cover several
years and that include a sufficiently large number of firms that switch the status
between using various advanced technologies or not over time (in both directions). The

jury is still out to find a generally accepted answer.
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Table 1: Descriptive statistics

12

Variable Mean Std. Dev. Min Max
Artificial intelligence 0.1933 0.3950 0 1
(Dummy; 1 = yes)

Cloud computing 0.4889 0.5000 0 1
(Dummy; 1 =yes)1

Robotics 0.2326 0.4226 0 1
(Dummy; 1 = yes)

Internet of things 0.2660 0.4420 0 1
(Dummy; 1 = yes)

Digital tech. for security 0.3765 0.4841 0 1
(Dummy; 1 = yes)

Blockchain 0.0392 0.1942 0 1
(Dummy; 1 = yes)

Biotechnology 0.0470 0.2117 0 1
(Dummy; 1 = yes)

Micro- and nanoelectronics 0.0586 0.2250 0 1
(Dummy; 1 = yes)

Advanced materials 0.1541 0.3611 0 1
(Dummy; 1 = yes)

Clean technologies 0.2374 0.4256 0 1
(Dummy; 1 = yes)

Advanced technology intensity 2.0935 1.9580 0 10
(Index; 0 —10)

Firm Age (years) 33.90 31.44 0 325
No. of Employees 150.92 668.81 1 15,000
Innovations 0.6778 0.4674 0 1
(Dummy; 1 = yes)

No. of Firms in Sample 2,064

Source: Own calculation based on data from Flash Eurobarometer 559; for details, see text
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Table 2: Share of Firms by Advanced Technology Intensity

Advanced technology Number of Percent
Intensity Firms

0 562 27.23
1 367 17.78
2 375 18.17
3 327 15.84
4 185 8.96
5 112 5.43
6 65 3.15
7 46 2.23
8 16 0.78
9 7 0.34
10 2 0.10
Total 2,064 100.0

Source: Own calculation based on data from Flash Eurobarometer 559; see text for details.



14

Table 3: Firm characteristics and use of advanced technologies —

Results from Kernel-Regularized Lest Squares Regressions

Technology Firm size Firm age Innovations
Artificial intelligence
AME 0.00007 -9.3e-6 0.0999
p 0.000 0.974 0.000
P25 0.000035 -0.00061 0.03158
P50 0.000069 -0.000091 0.08456
P75 0.00009 0.00056 0.16476
Cloud computing
AME 0.00004 0.000369 0.115
p 0.000 0.111 0.000
P25 0.000032 0.000113 0.0769
P50 0.000042 0.000405 0.1084
P75 0.000048 0.000627 0.1524
Robotics
AME 0.000165 0.000512 0.1144
p 0.000 0.112 0.000
P25 0.000095 -0.00041 0.04191
P50 0.000173 0.00027 0.1027
P75 0.000208 0.001471 0.1828




Internet of things
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AME 0.000094 0.00248 0.0986

p 0.000 0.361 0.000

P25 0.000072 -0.000296 0.0644

P50 0.000084 0.000371 0.0947

P75 0.000114 0.000729 0.1286
Digital technology for security

AME 0.00075 0.00095 0.1488

p 0.000 0.000 0.000

P25 0.000058 0.000665 0.1006

P50 0.000077 0.000957 0.1536

P75 0.000093 0.001409 0.2093
Blockchain

AME 3.2e-07 3.3e-06 0.000594

p 0.000 0.181 0.053

P25 2.4e-07 8.8e-07 0.000455

P50 3.0e-07 3.0e-06 0.00059

P75 3.7e-07 5.6e-06 0.000695
Biotechnology

AME 5.0e-06 -0.000028 0.0151

p 0.106 0.734 0.073

P25 2.8e-06 -0.0001 0.00915

P50 4.4e-06 -0.000032 0.0143

P75 6.4e-06 0.000058 0.0205




Micro- and nanoelectronics

16

AME 2.1e-07 3.0e-07 0.0012
p 0.001 0.931 0.002
P25 1.3e-07 -1.6e-06 0.00094
P50 1.9e-07 6.4e-08 0.00110
P75 2.9e-07 2.2e-06 0.00149
Advanced materials
AME 0.000021 -0.000038 0.0863
p 0.032 0.846 0.000
P25 0.00001 -0.00026 0.0556
P50 0.000017 -0.00013 0.0888
P75 0.000029 0.00016 0.1144
Clean technologies
AME 0.000047 0.000387 0.11127
p 0.001 0.130 0.000
P25 0.000027 -0.000055 0.0621
P50 0.000048 0.000412 0.0997
P75 0.000068 0.000844 0.1736
Advanced technology untensity
AME 0.000936 0.0031 0.9599
p 0.000 0.036 0.000
P25 0.000624 -0.000642 0.5069
P50 0.000944 0.003858 0.9344
P75 0.001217 0.008007 1.3826

Note: AME is the average marginal effect estimated by Kernel-Regularized Least Squares (KRLS), p is
the prob-value; P25, P50 and P75 are the marginal effects at the 25", 50™, and 75th percentile
estimated by KRLS. All samples include 2,064 firms. For details, see text.
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Appendix: Number of Firms by Country

Country Number of Firms Percent
Albania 33 1.60
Austria 45 2.18
Belgium 53 2,57
Bulgaria 49 2.37
Canada 63 3.05
Switzerland 57 2.76
Cyprus 26 126
Czech Republic 60 291
Germany 78 3.78
Denmark 110 5,33
Estonia 67 3.25
Spain 59 2.86
Finland 83 4.02
France 61 2.96
Great Britain 49 2.37
Greece 62 3.00
Croatia 62 3.00
Hungary 58 2.81
Ireland 49 2.37
Italy 66 3.20
Japan 40 1.94
Lithuania 46 2.23
Luxembourg 24 1.16
Latvia 60 2.91
Montenegro 23 1.11
North Macedonia 31 1.50
Malta 32 1.55
Netherlands 53 2.57
Norway 60 291
Poland 56 2.71
Portugal 50 2.42
Romania 56 2.71
Serbia 34 1.65
Sweden 71 3.44
Slovenia 48 2.33
Slovakia 70 3.39
Turkiye 41 1.99
United States 79 3.83
Total 2.064 100.0

Source: Own calculations based on data from Flash Eurobarometer 559
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