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(limited) resilience as an objective property of the economy-environment system to ac-

knowledging its partially subjective, preference-based character. We find that society

tends to be less willing to buffer exogenous shocks if resource goods are complements

in consumption than if they are substitutes. Hence, the stronger the complementarity

between the various types of resource goods, the less resilient the economy is.
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1 Introduction

Resilience is typically viewed as a property of natural systems and is defined as the

extent to which they can buffer exogenous shocks [1]. Natural systems, whether they

are ecosystems, species populations or climate systems, tend to be robust to small

perturbations. But if shocks are large enough that a system crosses a threshold or tipping

point, its dynamics may be such that it collapses to an undesired state. Examples of

natural systems characterized by limited resilience include populations with a minimum

population size below which extinction is inevitable (e.g., [2, 3, 4]), ecological systems

with complex interactions between the various components of the system such as shallow

lakes and semi-arid rangelands (e.g., [5, 6]), and the Earth’s climate system, where events

like melting of the Greenland ice sheet or of the permafrost in the Northern Hemisphere

might cause the Earth’s climate to change dramatically (e.g., [7, 8, 9]).

The extent to which a natural system is resilient against exogenous shocks is not

just a function of the underlying ecological processes; it also crucially depends on the

way in which the system is managed. An example in point is the stock of cod in the

North-East Arctic which collapsed in the late 1980s due to very high harvesting pressure

combined with a sudden shortage of its main prey species, capelin [10]. Poorly managed

natural resource systems, including so-called open-access resources, are generally less

resilient to shocks than optimally managed systems. This does not mean, however,

that optimally managed systems never collapse. Optimal policy making in an uncertain

world requires comparing the benefits and costs of pre-shock precaution and post-shock

system restoration – if restoration is physically possible at all. Hence, resilience is not

just an intrinsic feature of natural resources; institutions and preferences are likely to

play an important role, too [11].

In this paper, we explore the impact of human preferences on the resilience of op-

timally managed economies that depend on more than one type of renewable natural
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resource. We find two characteristics of preferences to be of key importance. The first is

– not surprisingly – the discount rate used by the social planner. For a given amount of

time needed for natural resources to return to their good state in the wake of a negative

shock, system restoration is less likely to be optimal the higher the social discount rate

– even if this leads to the demise of one or more resources. The second key characteristic

of preferences is more surprising: it is the extent to which the various types of natural

resources are substitutes or complements in the consumers’ utility function. While intu-

ition would suggest that society’s willingness to protect a natural resource from collapse

would be larger the more dependent it is on its output (that is, when natural resources

are complements rather than substitutes in consumption), we find the exact opposite.

The reason is that if restoring the resource requires a moratorium on its exploitation, it

is less costly to do so if there are good substitutes available so that postponing exploiting

the resource does not reduce consumer welfare by much. While we pay most attention

to the impact of the discount rate and the degree of complementarity in resource con-

sumption on the resilience of the resource-dependent economy, we analyze the impact of

other factors too, including the rate of resource regeneration and the opportunity costs

of harvesting.

Over the past decade, many papers have tried to provide explanations for the collapse

of historic societies as diverse as those of Easter Island, the Anasazi, and the Maya [12],

as better insights into the fate of previous civilizations may help the current one to better

cope with today’s major environmental crises such as climate change or biodiversity loss

[13, 14]. For example, Taylor [14] and Brander and Taylor [15] develop models to explain

the disappearance of the civilization on Easter Island, suggesting that its demise may

have been due to a nonlinear interaction between population growth and the dynamics

of natural resources, especially forest resources, resulting in feast-and-famine cycles.

While lack of property rights and myopia are most likely the underlying causes of the

collapse of the Easter Island civilization, our paper suggests that depletion of the forest
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resource is not necessarily suboptimal. To feed the population, fish need to be caught,

and hence trees need to be logged continuously to produce boats. Timber consumption

and catching fish are thus complements, and the instantaneous costs of reduced fishing

activity to restore forest stocks may have been too large compared to the long-run

benefits of recovered timber resources.

Modern society is admittedly much more complex than that of Easter Island, but

our model still provides important insights for the challenges we face today. For ex-

ample, because good substitutes are scarcer the higher the level of physical aggregation

(e.g., protein intake from wild deer can easily be replaced by farmed beef, but no good

substitutes are available for the Earth’s climate system), dealing with the large-scale en-

vironmental challenges posed today may even be more difficult than previously thought.

Our results have important implications for sustainable resource policy especially when

natural resources are complements in consumption, as it is obviously the case for e.g.

clean drinking water and fertile soil which is needed for food production. Our analysis

sheds light on the circumstances under which exogenous temporary negative shocks,

e.g. storms, floods or other hazards,1 may eventually lead to resource depletion. It also

sheds light on the optimal management of the resource system before it is hit by such a

shock.

The paper is organized as follows. In section 2, we present a stylized model of an

economy that depends on the use of two types of renewable natural resources. In sec-

tion 3, we derive the conditions for dynamically optimal resource use. In section 4, we

use this information to analyze the steady states and path dependence of the resource-

dependent economy. In particular, we study how the number of optimal steady states

and their stability properties depend on the degree of complementarity of the two re-

1Here we focus on the impact of exogenous shocks on the level of individual resource stocks, assuming

that their dynamic properties are unaffected. For an analysis of the case in which climate change affects

resource regeneration functions, see [16].
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sources in consumption and on the social discount rate, providing both analytical results

and numerical examples. We use the results to determine the consequences for optimal

resilience management of a resource-dependent economy in section 5, taking into ac-

count the possibility that the stocks may be hit by a negative shock. We conclude by

discussing the implications of our model for the management of global natural resources

in section 6.

2 Model of a natural-resource-dependent economy

Consider a representative agent who derives utility from the consumption of a (compos-

ite) manufactured good, y(t), and from the consumed quantities of two different natural

resource goods, h1(t) and h2(t). The agent’s instantaneous utility function is specified

as

u(y(t), h1(t), h2(t)) = y(t) + γ ln

[∑
j=1,2

hj(t)
1−κ

] 1
1−κ

, (1)

where γ > 0 is the weight the agent attaches to consumption of natural resources, and

1/κ is the elasticity of substitution between the two natural resource goods.

The quasi-linear utility function (1) captures some stylized facts about preferences

on natural resources and manufactured goods. Natural resources typically satisfy basic

needs. This is captured by equation (1) because marginal utility goes to infinity (zero)

as the consumption of resources goes to zero (infinity). Marginal utility of the man-

ufactured good, in contrast, is constant. Hence, this good is not essential: marginal

utility does not go to infinity as consumption goes to zero. Next, utility function (1) is

flexible in that it allows the two natural resource goods to be complements in consump-

tion or substitutes, depending on the value of κ. Resources are perfect substitutes in

consumption if κ→ 0 and perfect complements if κ→∞, with κ = 1 as the special case

where the sub-utility from resource consumption is the Cobb-Douglas function. Hence,

κ measures the degree of complementarity of the two resource goods in consumption:
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the higher κ, the stronger the complementarity between the two. Finally, note that in

case κ > 1, depletion of one or more resources (implying that h1(t) and/or h2(t) equals

zero) results in instantaneous utility being equal to minus infinity. This suggests that it

is never optimal to deplete either resource in finite time – but see section 4.

The representative agent inelastically supplies one unit of labor on a competitive

labor market. Labor is allocated between the three activities of producing the manu-

factured good, y, and harvesting of the two natural resource stocks to produce resource

goods, h1 and h2. We assume that all markets always clear, so that quantities con-

sumed of each of the three commodities equal the quantities supplied. Regarding the

production of the manufactured good, we assume that the quantity produced is a linear

function of just one input, labor, with constant marginal productivity equal to ω > 0.

Using e1(t) and e2(t) to denote effort allocated to respectively harvesting of resource

goods 1 and 2 at time t, the aggregate output of the manufactured good produced thus

equals

y(t) = ω

(
1−

∑
j=1,2

ej(t)

)
. (2)

Normalizing the sales price of the manufactured good to unity, linearity of the manu-

facturing production function (2) implies that the general equilibrium wage rate equals

ω – as long as manufacturing is still taking place. To ensure that this is the case, we

assume that ω > γ (see Appendix A.1), that is, the marginal product of manufacturing

should be larger than the weight the representative agent attaches to the consumption

of natural resource goods.

Regarding the natural resource sectors, we assume that resource goods are harvested

according to the standard Schaefer function [17, 18]:

hj(t) = qj xj(t) ej(t), j = 1, 2, (3)

where xj(t) is the size of the resource stock j at time t, and qj is a technology parameter

reflecting what share of the resource stock j can be harvested per unit of effort. Note
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that the marginal product of labor, ej(t), allocated to harvesting resource j is larger the

larger the size of the resource stock, xj(t).

Regarding the dynamics of the resource stocks, current harvesting hj(t) reduces the

remaining stock xj(t), but there is also natural regeneration. The change in the stock

size of resource j at time t, ẋj(t) ≡ dxj(t)/dt, equals the net natural growth of the

resource stock, fj(xj(t)), minus the quantity harvested, hj(t):

ẋj(t) = fj(xj(t))− hj(t), j = 1, 2, (4)

where we assume that both resources regenerate according to the standard logistic

growth function [19]:2

fj(xj(t)) = rj xj(t)

(
1− xj(t)

Kj

)
, j = 1, 2. (5)

Here rj denotes the intrinsic (or maximum) growth rate of resource j, and Kj its carrying

capacity (or the maximum stock the ecosystem can sustain). Substituting (5) into (4),

our model implies that net natural growth of resource j is a function of just the size of

its stock and of the rate at which it is being harvested – there is no physical interaction

between the two resource stocks. We thus assume that the only interaction between the

two is via consumer preferences (see also [20, 21, 22, 23]).

We assume that a social planner maximizes the representative household’s present

value of utility
∞∫
0

u(y(t), h1(t), h2(t)) e
−δ t dt, (6)

where δ > 0 is the social discount rate. This discount rate is assumed to reflect the

representative household’s impatience to consume, but possibly also the limited perma-

2We assume resource regeneration to be subject to logistic growth, and hence we do not impose

any inherent non-linearities in their regeneration. Hence, we abstract from “regime shifts” within the

resource system (but see [16]). Moreover, we would like to note that our qualitative results do not

depend on the specific form (5). Similar results can be obtained for other specifications of fj(xj).
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nence of society’s institutions. With a positive probability, the current institutions may

cease to exist at any given point in time by forces beyond the planner’s control.

To maximize (6), the social planner chooses the quantity harvested of each of the two

resources, h1(t) and h2(t), in every period as well as the amount of the manufactured

good produced, y(t), taking into account constraints (1)–(5) as well as the initial stock

sizes (xj(0) = xj0, j = 1, 2).3

3 Conditions for optimal resource use

The conditions for dynamically optimal resource use are derived as the necessary first-

order conditions for the social planner’s maximization problem. In the following, we use

πj to denote the shadow price of consuming resource j. This shadow price is equal to

the direct marginal costs of harvesting, i.e., the cost of effort needed to harvest an extra

unit of resource j, plus the opportunity costs of reducing the current resource stock with

one unit, which are given by the shadow price of the stock of resource j, µj.

Using (4) and the conditions for optimal resource (see Appendix A.1), we obtain the

following system of differential equations (i, j = 1, 2, j 6= i):

ẋj = fj(xj)− hj = fj(xj)− γ
π
− 1
κ

i∑
j=1,2

π
1− 1

κ
j

, (7)

π̇j =
[
δ − f ′j(xj)

] [
πj −

ω

qj xj

]
− ω fj(xj)

qj x2j
, (8)

that governs the optimal dynamics of the resource-dependent economy together with

the initial conditions, xj(0) = xj0, and the transversality conditions, e−δ t µj xj
t→∞−−−→ 0,

for both resources j = 1, 2. The interaction between the two resources is captured by

the harvesting term in equation (7). Equation (8), in contrast, depends only on the

stock and shadow price of the resource j = 1, 2 itself.

3 From here on, we omit the time indicators, unless it may cause confusion to do so.
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The resilience of the resource-dependent economy is determined by the number of

optimal steady states, and their stability properties. A steady state is characterized

by ẋ1 = ẋ2 = 0 and π̇1 = π̇2 = 0. Using these conditions in (7) and (8) we obtain (for

i, j = 1, 2 and j 6= i):

πj = πi

[
γ

πi fi(xi)
− 1

] κ
κ−1

, (9)

πj =
ω

qj xj

[
1 +

fj(xj)

xj
[
δ − f ′j(xj)

]] . (10)

Note that in equation (10) the shadow price of consuming resource j is just a function

of the size of stock j, while the interaction between the two resources is captured in

equation (9). Using (5), we can rewrite (10) as

xj(πj) =
Kj

4

√ 8 δ ω

rj qjKj πj
+

[
δ − rj
rj
− ω

Kj qj πj

]2
− δ − rj

rj
+

ω

Kj qj πj

 , (11)

while combining (9) and (10) yields:

πj(xi) =
ω

qi xi

δ + ri
xi
Ki

δ − ri + 2 ri
xi
Ki

γ qi
ω ri

δ − ri + 2 ri
xi
Ki[

δ + ri
xi
Ki

] [
1− xi

Ki

] − 1

 κ
κ−1

. (12)

Together, equations (11) and (12) give the optimal steady-state stock xj of resource j

as a function of the steady-state stock xi of resource i, the xj(xi)-isocline.

4 Steady states and path dependence of optimal re-

source management

To be able to derive clear-cut analytical results, we assume in the following that the

two natural resources are governed by the same dynamic processes. That is, the pa-

rameters of the biological growth functions are the same, and so are the parameters of

the harvesting functions: r1 = r2 = r, K1 = K2 = 1, and q1 = q2 = q. Furthermore,
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because (x1, x2) = (0, 0) is an absorbing state (see equation 5), we assume throughout

the analysis that at least one of the resource stocks is initially strictly positive.

We aim to analyze the number of steady states in the system, as well as their stability

properties. It is easy to show that under mild parameter conditions and assuming that

the two resource stocks are driven by the same dynamic processes, there always exists a

symmetric steady state in which the stocks of both resources are strictly positive. This

is stated more formally in the following lemma.

Lemma 1. For symmetric resources, and if and only if max
{

2 r ω − γ q, rγ q − δ(γ q −

2 r ω)
}
> 0, there is one (and only one) symmetric steady state (xS1 , x

S
2) = (xS, xS),

where

xS =
1

2 r

[
r − δ − γ q

ω
+

√
(δ + r)2 +

(γ q
ω

)2]
> 0. (13)

Proof: see Appendix A.2. �

The resource stocks in the symmetric interior steady state do not depend on the

degree of complementarity, κ, as both resources are used in equal quantities. Of course,

the sizes of the resource stocks do depend on the social discount rate, δ: the higher the

discount rate, the smaller the optimal resource stocks. If the condition 2 r ω > γ q is

met, however, the steady state stocks are positive even for δ → ∞. Higher weights on

resource consumption (γ), higher harvesting productivities (q) and lower productivity

levels in manufacturing (ω) make instantaneous resource harvesting more attractive –

especially if society does not care much about the future (i.e., if δ →∞). In that case,

stock depletion can still be avoided, but only if the intrinsic growth rate of the resource

(r) is sufficiently high.

We are interested in how the number of steady states depends on society’s pref-

erences, including the degree of complementarity of resources in consumption. The

following proposition yields a first result.
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Proposition 1. The symmetric steady state is locally stable independent of the degree

of complementarity κ if either γ q < r ω or δ < r2 ω/ (2 (γ q − r ω)) ≡ δMSY .

Proof: see Appendix A.3. �

Combined with Lemma 1, Proposition 1 states that the steady-state level of xS is

independent of κ if min{r ω − γ q, δMSY − δ} > 0. The reason is that if this condition is

met, the steady-state resource stock xS – as defined in (13) – is larger than the maximum

sustainable yield stock, xMSY.4 If γ q < r ω, demand for the resources (captured by γ)

and productivity of resource extraction (q) are so low relative to resource productivity

(r) and opportunity costs of harvesting (ω) that even under full myopia (δ → ∞, or

equivalently: open access) the symmetric steady-state stocks are larger than the stocks

that would generate the maximum sustainable yield (see Appendix A.2). If γ q > r ω,

one has xS = xMSY if δ = r2 ω/ (2 (γ q − r ω)) ≡ δMSY, and hence the symmetric steady-

state levels are smaller than xMSY if and only if min{r ω − γ q, δMSY − δ} > 0.

Lemma 1 states that there is no interior symmetric steady state if max
{

2 r ω −

γ q, rγ q−δ(γ q−2 r ω)
}
< 0, and Proposition 1 states that if max {r ω − γ q, δMSY − δ} >

0, the symmetric steady-state stocks are positive and stable independent of κ. Having

established these results, we now move on to analyzing the case where the symmetric

steady state is in the interior (because (xS1, x
S
2) = (0, 0) is not very interesting if one

wants to study resilience), and where xSj < xMSY (because the system is always perfectly

resilient if xSj ≥ xMSY). That means that for the rest of the paper we explore all cases

for which the following condition holds:

Condition 1: r ω < γ q < 2 r ω and δ > δMSY.

For all cases in which Condition 1 holds, the steady state stocks are in between 0

4 The maximum sustainable yield stock is the stock size at which the amount that can be harvested

without reducing the stock, is maximal. For any x harvesting is sustainable if hj ≤ f(xj), and the

largest quantity that can be harvested sustainably is at the stock level where net resource regeneration

is largest. Solving f ′(xj) = 0 and using the equation of motion (5), we have xMSY = K/2 = 1/2.
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and the maximum sustainable yield stock, and preferences may affect both the number

of steady states and their stability. Therefore, we now turn to analyzing the situations

in which resources are either substitutes (section 4.1) or complements (section 4.2) for

all cases in which Condition 1 is met.

4.1 Optimal dynamics when resources are substitutes

Let us now analyze the case where Condition 1 holds and where the degree of com-

plementarity of the two resources in consumption is such that they are substitutes in

consumption (i.e., κ < 1).

Proposition 2. When resources are substitutes (κ < 1) the following holds.

2a. The system has three steady states if

δ < r
γ q

γ q − ω r
≡ δ0 : (14)

the symmetric steady state (xS1 , x
S
2) = (xS, xS) with xS > 0, and two asymmetric steady

states (xA, 0) and (0, xA), with

xA =
1

2 r

r − δ − 2 γ q

ω
+

√
(δ + r)2 +

(
2 γ q

ω

)2
 > 0. (15)

2b. Independent of (14), the symmetric steady state (xS, xS) is globally stable.5

Proof: see Appendix A.4. �

Any optimal steady state, whether or not we assume that resources are identical, is

determined by the solution of the fixed-point equation x1(x2(x1)) = x1, where x1(x2)

and x2(x1) are determined by equations (11) and (12) (for i, j = 1, 2 and j 6= i). When

resources are substitutes the isoclines are upward-sloping over the entire domain (see

Appendix A.4), and hence they only intersect once. These results are illustrated in

5By “global” we mean the entire state space, with the exception of the axes (x1, 0) with x1 ≥ 0 and

(0, x2) with x2 ≥ 0 – which is a subset of measure zero in the entire state space.
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Figure 1: Phase diagrams for (a) low (δ < δ0) and (b) high (δ > δ0) social discount rates

for the case when resources are substitutes, κ < 1.

Figure 1.6 Proposition 2 states that if κ < 1, (xS, xS) is the only optimal steady state,

as the asymmetric ones are unstable. That means that xj = xA, x−j = 0 is achieved

only if x−j(0) = 0.

We will refer to the case where δ < δ0 (see 14) as the case of a low discount rate

and to δ > δ0 as the case of a high discount rate.7 Figure 1(a) shows the case of a low

discount rate, where there are two asymmetric steady states (xA, 0) and (0, xA) with

xA > 0 (cf. Proposition 2). For the case of a high discount rate, shown in Figure 1(b),

(xS, xS) is the only non-trivial steady state. In short, if κ < 1, the optimal steady state

stocks of both resources are strictly positive; corner solutions are only optimal if and

only if one of the two resource stocks is initially equal to zero.

6 For our numerical analyses that we use to construct all figures, we choose r = 0.04, ω = 0.1 and

q = 0.1. We set the weight of resources in utility at γ = 0.0667 = 0.667ω, which means that two thirds

of the available effort is spent harvesting resources. In Figure 1, we further use δ = 0.05, κ = 0.625 in

panel (a), and δ = 0.17, κ = 0.625 in panel (b).

7Subscript 0 in δ0 refers to the result that xA = 0 for all δ > δ0 (cf. Proposition 2).
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4.2 Optimal dynamics when resources are complements

Let us now check whether the interior steady state is still globally stable if the two

resource goods are relative complements in consumption, κ > 1 (taking into account

Condition 1). Trivially, (0, 0) is a steady state, and from Lemma 1 we know that there

always is an interior symmetric steady state ((xS1, x
S
2) = (xS, xS)). However, it is easy to

see that in case resources are complements, there are two additional asymmetric steady

states: (0, 1) and (1, 0). With κ > 1 we have xj
t→∞−−−→ 1 if x−j(0) = 0: if one resource has

been depleted, harvesting the other one does not yield any utility, and hence the latter

stock grows to its carrying capacity (recall we set K = 1). Below we also prove that we

may also have xj
t→∞−−−→ 1 if x−j(0) is positive but close to zero, but only if the discount

rate is sufficiently high or the degree of complementarity sufficiently large. If this is the

case, (1,0) and (0,1) are locally stable and hence the economy does not necessarily end

up in (xS, xS).

Before we can state this formally in Proposition 3, we first state two Lemmas:

Lemma 2. When resources are complements (κ > 1), the symmetric interior steady

state is locally stable if κ < κ̂(δ) and locally unstable if κ > κ̂(δ), where κ̂(δ) > 1 is

defined by

κ̂(δ) ≡ −π
′(xS)

π(xS)

f(xS)

f ′(xS)
(16)

with π(xS) = ω
q xS

δ+r xS

δ−r+2 r xS
and xS is given by (13).

Proof: see Appendix A.5. �

We will refer to the case 1 < κ < κ̂(δ) as the resources being mild complements and

to the case κ > κ̂(δ) as the resources being strong complements.8

8 Note that because κ̂ is a function of δ (because xS is a function of δ), the definitions of mild and

strong complementarity depend on the level of the discount rate. A specific degree of complementarity,

κ, may be considered ‘mild’ for some values of δ, and ‘strong’ for others – depending on whether κ is

smaller than κ̂(δ), or not. We will come back to this at the end of this subsection.
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Lemma 2 indicates that the degree of complementarity may crucially affect the sta-

bility of steady states, including the symmetric one. We next use this result to derive

conditions under which other interior steady states exist and to characterize their re-

spective stability properties.

Lemma 3. When resources are complements (κ > 1),

3a. for a low discount rate (δ < δ0) and strong complementarity (κ > κ̂(δ)) there are

two locally stable asymmetric interior steady states (xA1 , x
A
2 ) and (xA

′

1 , x
A′

2 ) = (xA2 , x
A
1 )

with xA1 > 0, xA2 > 0 and xA1 6= xA2 .

3b. for a high discount rate (δ > δ0) and mild complementarity (κ < κ̂(δ)) there are

two unstable asymmetric interior steady states (xA1 , x
A
2 ) and (xA

′

1 , x
A′

2 ) = (xA2 , x
A
1 ) with

xA1 > 0, xA2 > 0 and xA1 6= xA2 .

Proof: see Appendix A.6. �

Combined with Lemma 1, Lemma 3 indicates that there can be multiple interior

steady states. This may come as a surprise, as the resource dynamics are given by

logistic growth equations and thus perfectly convex. The objective function, however,

depends on the stock sizes of the two resources, as the costs of harvesting resource j

depend on xj, and hence the economy may be characterized by multiple steady states

(see also [24]).9

Note that δ0 is lower the higher are γ and q, and the lower is ω (see 14). If several

interior steady states exist (i.e., if κ > κ̂(δ) and δ < δ0 or if 1 < κ < κ̂(δ) and δ > δ0),

none of them can be globally stable. This gives rise to the following proposition:

Proposition 3. 3a. for mild complements (1 < κ < κ̂(δ)) and a low discount rate

(δ < δ0), there are three steady states, (xS, xS), (1, 0) and (0, 1), of which (xS, xS) is

locally stable;

9For a more general discussion of how multiple equilibria and tipping points can materialize in

concave optimization problems with one state variable, see [25].
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3b. for strong complements (κ > κ̂(δ)) and a low discount rate (δ < δ0), there are

five steady states, (xS, xS), (1, 0), (0, 1), (xA1 , x
A
2 ) and (xA2 , x

A
1 ), of which (xA1 , x

A
2 ) and

(xA2 , x
A
1 ) are locally stable;

3c. for mild complements (1 < κ < κ̂(δ)) and a high discount rate (δ > δ0), there are

five steady states, (xS, xS), (1, 0), (0, 1), (xA1 , x
A
2 ) and (xA2 , x

A
1 ), of which (xS, xS), (1, 0)

and (0, 1) are locally stable;

3d. for strong complements (κ > κ̂(δ)) and a high discount rate (δ > δ0), there are

three steady states, (xS, xS), (1, 0), (0, 1), of which (1, 0) and (0, 1) are locally stable.

Proof: a) and d) follow from Lemma 2; b) and c) follow from Lemma 3. �

Proposition 3 states that, unlike in the case of resources being substitutes, the sym-

metric steady state is locally stable if and only if both the discount rate and the degree

of complementarity are sufficiently low. This is because the present value of the ben-

efits of building up the relatively small stock are larger the lower is the discount rate,

while the costs of doing so are larger the stronger the complementarity between the two

resources. Building up a stock requires reducing per-period extraction, and using little

of the relatively scarce resource implies that utility during the transition phase is quite

low – as the reduced use of the relatively scarce resource can hardly be compensated by

a more intensive use of the relatively abundant one. Therefore, the higher the degree

of complementarity, the less likely it is that society is willing to invest in building up

stocks, and the more so the more impatient it is.

Let us now look at Proposition 3 in more detail; see Figure 2.10 If the two resources

are complements (κ > 1) and the discount rate is sufficiently small (δ < δ0), Proposi-

tion 3 states that there are three steady states in the system’s interior (case 3b) – unless

complementarity is fairly weak (1 < κ < κ̂(δ); see case 3a). Proposition 3a is illustrated

10 In addition to the parameter values given in footnote 6, we use δ = 0.09, κ = 1.667 in panel (a)

of Figure 2, δ = 0.09, κ = 5.0 in panel (b), δ = 0.17, κ = 1.667 in panel (c), and δ = 0.17, κ = 2.5 in

panel (d).

15



(a) (b)

1 < κ < κ̂(δ); δ < δ0

O

S

stock of resource 1, x1

st
o
ck

of
re

so
u

rc
e

2
,
x
2

10

1

0

κ > κ̂(δ); δ < δ0

O

A

A′

S

stock of resource 1, x1

st
o
ck

of
re

so
u

rc
e

2,
x
2

10

1

0

(c) (d)

1 < κ < κ̂(δ); δ > δ0

O

C

C′

A

A′

S

stock of resource 1, x1

st
o
ck

of
re

so
u

rc
e

2
,
x
2

10

1

0

κ > κ̂(δ); δ > δ0

O

S

stock of resource 1, x1

st
o
ck

of
re

so
u

rc
e

2,
x
2

10

1

0

Figure 2: Phase diagrams for different degrees of complementarity κ > 1 of the resources

and different social discount rates δ.

in Figure 2 (a); whatever the initial steady state stocks, society is sufficiently patient

to be willing to invest in building up the relatively small stock – because the degree

of complementarity is not very strong so that during the transition phase the decrease

in welfare can be kept limited by using more of the relatively abundant stock. Hence,

the symmetric steady state, S, is the only optimal steady state of the system. In case

3b, illustrated in Figure 2 (b), society is patient enough to ensure the existence of an

interior stable steady state, but this is not the symmetric steady state (S), which is
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unstable, but rather two locally stable asymmetric steady states exist, A and A′. The

high degree of complementarity between the two resources limits the attractiveness to

build up both resource stocks, and this leads to a path dependency of the economy. For

any initial relative stock size ((x1(0), x2(0)), x1(0) 6= x2(0)), the steady state stock of the

initially scarce resource is relatively small, while the steady state stock of the initially

abundant resource is relatively large. So if x1(0) < (>)x2(0), the system ends up in the

asymmetric steady state A (A’); only if x1(0) = x2(0), the system ends up in S – as

indicated by the dashed saddle path.

If the two resources are complements (κ > 1) and the discount rate is sufficiently

large (δ > δ0), Proposition 3 states that there are three steady states in the system’s

interior (case 3c) – unless complementarity is too strong (κ > κ̂(δ); see case 3d). Figure 2

(c) illustrates case 3c with δ > δ0 and 1 < κ < κ̂(δ). The two asymmetric steady states

A and A′ are saddle-point stable. The dashed lines C and C′ depict the saddle point

trajectories that would lead to these steady states. Thus, if δ > δ0 and 1 < κ < κ̂(δ),

the initial stocks determine which steady state is optimal – (xS, xS), (1,0), or (0,1). For

all initial states in between C and C′ the optimal paths lead to the symmetric steady

state S. For initial states to the west (south) of the saddle path C (C′), it is optimal to

continue harvesting both resources at reasonably high rates until the initially scarcest

resource is depleted in the limit t → ∞, while the initially most plentiful stock grows

logistically until it reaches, in the limit, its carrying capacity K = 1. In the limit,

the level of well-being would be minus infinity (cf. the utility function (1)), but with a

sufficiently impatient society (condition δ > δ0 holds) the discount factor would tend to

zero faster than the current level of well-being would decrease.

Finally, the two (saddle point stable) interior asymmetric steady states (xA1 , x
A
2 ) and

(xA2 , x
A
1 ) vanish if δ > δ0 and κ > κ̂(δ), and moreover (xS, xS) loses its (local) stability;

see Proposition 3d and Figure 2 (d). Here, the complementarity of resources and the

rate of discount are so high that the collapse of the resource-dependent economy is
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low discount rate high discount rate

δ < δ0 δ > δ0

substitutes κ < 1 (xS, xS) (xS, xS)

mild complements 1 < κ < κ̂(δ)
regime I

(xS, xS)

regime II

(xS, xS), (1, 0), (0, 1)

strong complements κ > κ̂(δ)
regime III

(xA1 , x
A
2 ), (xA2 , x

A
1 )

regime IV

(0, 1), (1, 0)

Table 1: Summary of locally stable steady states.

optimal for almost any set of initial conditions. The only exception is the case where

the economy initially is on the saddle path to the symmetric steady state, i.e. where

x1(0) = x2(0) holds exactly. So, if society starts harvesting in the Garden of Eden

(where both x1(0) and x2(0) are equal to 1 – their maximum levels), the symmetric

steady state may eventually be reached – but only if neither of the two resources are hit

by even the tiniest shock.

We summarize all results in Table 1. If resources are substitutes (κ < 1) and if

resource j is relatively abundant (xj(0)/x−j(0) is relatively large), the costs of building

up resource −j are relatively small because the reduced use of resource −j can at least

partly be compensated by a more intensive use of resource j. Indeed, we find that

the welfare costs associated with system restoration in the transition phase are always

smaller than the net present value of the benefits of eventually having x1 = x2 = xS

– that is, for the relevant case where max {2 r ω − γ q, rγ q − δ(γ q − 2 r ω)} > 0; see

Lemma 1.11 If the resources are complements (κ > 1) , it may still be optimal to build

up the relatively scarce resource stock towards its symmetric steady state level xS, but

11Note that this holds a fortiori if min{r ω−γ q, δMSY−δ} > 0 also holds, because then the symmetric

steady state is interior as well as locally stable for all values of κ anyway – see Proposition 1.
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not if the degree of complementarity is too high (that is, if κ > κ̂(δ)). For high levels

of complementarity the economy tends towards asymmetric steady states, which are

located in the interior if and only if the benefits of partially building up the relatively

scarce resource are sufficiently high – that is, if the discount rate is sufficiently low.

Before we turn to the analyzing the economy’s resilience in more detail, it is impor-

tant to note that the conditions on δ and κ (cf. 14 and 16) are not independent – as

already suggested in footnote 8. The following lemma characterizes this relationship in

more detail.

Lemma 4. κ̂(δ) is monotonically decreasing from κ̂(δMSY) = +∞ to lim
δ→∞

κ̂(δ) = γ q/(2 (γ q−

r ω)) ≡ κ > 1.

Proof: see Appendix A.5. �

The properties of κ̂(δ) are illustrated in Figure 3.12 Lemma 4 states that κ̂ is de-

creasing in δ: for any given κ > 1, the higher the discount rate, the more likely it is

that two resources are being labeled ‘strong complements’, and hence the less likely it

is that society is willing to invest in building up the initially relatively scarce one.

Lemma 4 thus implies an alternative definition for ‘mild’ and ‘strong’ complemen-

tarity. Using δ̂ to denote the level of the discount rate that implicitly solves κ̂(δ) = κ,

resources with a degree of complementarity equal to κ are defined to be mild (strong)

complements if δ < δ̂(κ) (δ > δ̂(κ)). Hence, in reference to Table 1, we can identify four

regimes for κ > 1 where Regime I is the case of low discount rates (δ < δ0) combined

with mild complementarity (κ < κ̂(δ)), Regime IV is the case of high discount rates and

strong complementarity (δ > δ0 and κ > κ̂(δ)), etc. So, for (xS, xS) to be stable for a

pair of resources with degree of complementarity equal to κ (that is, for Regimes I or

II to apply), the discount rate should be smaller than δ̂(κ) (so that the resources are

12 In addition to the parameter values given in footnote 6, we use κA = 5.0 and κB = 1.667 in

Figure 3 as well as in Figure 4 below.
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Figure 3: Threshold degree of complementarity as a function of the social discount rate

(for δ > δMSY).

mild complements; κ < κ̂(δ)). Furthermore, the corner steady states (1, 0) and (0, 1)

are stable for δ > δ0 (Regimes II and IV) and unstable for δ < δ0 (Regimes I and III).

Hence, Regime I applies if δ < min{δ0, δ̂(κ)}. Regarding the issue of which of the two

conditions (δ < δ0, or δ < δ̂) is more stringent, let us denote with κ? the value of κ for

which the conditions (14) and (16) coincide.13 This is represented in Figure 3 as follows.

For a specific level κ = κA > κ?, δ̂(κA) < δ0, while for κ = κB < κ?, δ̂(κB) > δ0. That

is, defining κ? = κ̂(δ0), we have δ̂ > δ0 (δ̂ < δ0) for all κ < κ? (κ > κ?).

4.3 Bifurcation diagrams

Having established the dynamics of the resource stocks for various levels of δ and κ > 1,

let us now turn to the question how these two key parameters affect the economy’s

resilience. Suppose that the economy is in steady state and that it is hit by an exogenous

13 Note that this value κ? exists and is unique, as δ0 > δMSY (recall that γ q > r ω; see Condition 1).
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Figure 4: Bifurcation diagrams: steady state stock sizes as function of discount rate

for (a) mild and (b) strong complements. Red solid lines depict an (almost) globally

stable equilibrium, magenta dotted lines locally stable equilibria and blue dashed lines

(almost) unstable equilibria. Roman numbers I–IV refer to the regimes identified in

Table 1.

shock, does the economy return to its original steady state? In Figure 4 we depict the

steady states of the economy as a function of δ (with κ > 1). In Figure 4(a) κ is

sufficiently close to 1 that we have δ0 < δ̂(κ) (that is, κ < κ?), while Figure 4(b)

is drawn for a larger κ such that δ̂(κ) < δ0 (i.e., κ > κ?). The bifurcation diagrams

summarize the resilience properties of the various cases as identified in Proposition 3,

and Roman numbers I-IV indicate the regime the economy is in, where the regimes are

defined in Table 1; see also Figure 3.

Figure 4(a) shows how the stability properties depend on the discount rate for κ < κ?

so that δ0 < δ̂. At low levels of δ (δ < min{δ0, δ̂}), the economy is in Regime I, so there

is just one optimal steady state. This steady state is globally stable, and hence the

economy will return to it as long as the exogenous shock perturbing the system does not

directly exhaust any of the two resources. For larger δ such that δ0 < δ < δ̂, consumers

are more impatient or society’s institutions are of limited permanence (δ > δ0), but

given the actual degree of complementarity (κ), the discount rate is still sufficiently
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small (δ < δ̂) that the resources can still be labeled mild complements (1 < κ < κ̂(δ)).

That means that the economy is in Regime II, and the relevant phase diagram is now

Figure 2(c). Hence, there are three interior steady states, two of which are unstable

(A and A′, depicted as the upper and lower branches in Figure 4(a)), and one locally

stable one (S, in the middle between A and A′). If a shock moves the system outside

the region bounded by the unstable equilibria A and A′, it is optimal for society to

ultimately deplete one of the resources because the (instantaneous) costs of regenerating

the scarcest resource are smaller than the benefits. Finally, for even higher levels of δ

such that δ > δ̂, the discount rate is sufficiently high that the resources can now be

labeled strong complements (see Regime IV) and hence the economy loses its resilience

altogether – the basin of attraction for S has shrunk to zero, as it has become an

unstable steady state itself. The relevant phase diagram is now Figure 2 (d): the two

saddle-point stable branches disappear, and any shock, however small, will result in the

ultimate depletion of one of the resources.

Figure 4(b) is drawn for κ > κ? so that δ̂ < δ0. For discount rates close to 0 (so that

δ < min{δ̂, δ0}), the symmetric steady state is globally optimal, and the economy is in

Regime I. For levels of δ such that δ̂ < δ < δ0, the discount rate itself is still ‘low’, but

it is sufficiently high that the resources can now be labeled ‘strong complements’. That

means that the economy is in Regime II, and the relevant phase diagram is Figure 2(b):

the two asymmetric interior steady states are locally stable. And if the discount rate

is even higher (that is, δ > δ0 > δ̂), the economy is in Regime IV, and only the corner

steady states are stable.
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5 Optimal resilience management of the resource-

dependent economy

In section 4 we have studied the (multiple) steady states and path dependence of the

optimally managed resource-dependent economy, answering the question whether, for

given δ, κ and all other parameters of the economy, society is willing to invest in building

up the initially relatively scarce resource, yes or no, for specific levels (and ratios) of

x1(0) and x2(0). Clearly, this is relevant in itself, but it also provides the necessary

input for the analysis of the optimal management of the resource-dependent economy

(see also [16] for a similar analysis). If a shock to the economy results in a specific ratio

of x1/x2 6= 1, is it optimal for society to bring the economy back to the state where

x1 = x2 = xS, or not?

In this section we build on the previous two sections’ results to analyze the con-

sequences a one-time random shock ∆ = (∆1,∆2) hitting the resource stocks at time

T , such that the stock variables shift from the current state (x1(T ), x2(T )) to another,

disturbed state (x1(T +dt), x2(T +dt)) = (x1(T )−∆1, x2(T )−∆2) an infinitesimal time

increment dt later. The random shock ∆ is distributed over some bounded support Ω.

After such a disturbance, the social planner re-optimizes its harvesting and production

plans to maximize (6) given the post-shock stock sizes (and taking into account equa-

tions (1)–(5)). We will focus on parameter values where κ > 1 and the economy is in

Regime II, as this is the most interesting case with one stable steady state with positive

stock sizes (the symmetric steady state (xS, xS)) and two stable steady states where one

stock is depleted (the corners (0, 1) and (1, 0)); see Figure 2(c).

The social planner’s optimization problem at time t = 0 before the resource stocks

are hit by the random shock at time T is

max
y(t),h1(t),h2(t)

T∫
0

u(y(t), h1(t), h2(t)) e
−δ t dt+ e−δ T E {V (x1(T )−∆1, x2(T )−∆2)} (17)
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subject to (2)–(5) and using (x1(0), x2(0)) = (xS, xS) as initial stocks. We use E to

denote the expectation operator over the random disturbance at time T . Furthermore,

the value function V (x1, x2) is defined as

V (x1, x2) = max
y(t),h1(t),h2(t)

∞∫
0

u(y(t), h1(t), h2(t)) e
−δ t dt (18)

subject to (2)–(5) with initial state (x1, x2)

The first-order conditions that determine the optimal development of the economy

before the shock are identical to those given in Appendix A.1, except for the transver-

sality conditions at T . These transversality conditions require that the shadow price µj

of resource stock j = 1, 2 must equal the expected marginal value of the stock after T ,

i.e. µj(T ) = E{Vxj(x1(T )−∆1, x2(T )−∆2)}.

We numerically study the optimal development of the economy before the shock

assuming δ = 0.17, and for two different degrees of complementarity, κ = 1.5 and κ =

1.8. Given the other parameter values as specified in footnote 6, we have 1 < κ < κ̂(δ)

and δ > δ0 for both values of κ, and hence the economy is in Regime II as identified

in Table 1. The corresponding phase diagrams are drawn in Figure 5(a) and (b). For

initial states to the west (south) of the saddle path C (C′), it is optimal to continue

harvesting both resources at reasonably high rates until the initially scarcest resource

is depleted in the limit t → ∞, while the initially most plentiful stock grows until it

reaches, in the limit, its carrying capacity K = 1. The range of post-shock values of x1

and x2 for which (0,1) or (1,0) are optimal, is clearly larger for κ = 1.8 than for κ = 1.5.

So how does this difference in resilience affect the society’s optimal management plans?

We proceed as follows. First, we numerically compute the value function V (x1, x2)

using the collocation method for solving the Bellman equation corresponding to the

planner’s optimization problem [26].14 The resulting value functions are shown in Fig-

14 Programming codes are available from the authors. We use Matlab (version 7.11.0) with the Comp-

Econ toolbox provided by [26]. For the collocation method, we use two-variate Chebychev polynomials
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Figure 5: Phase diagrams (top), value functions (middle), and optimal paths of resource

stocks before a shock at time T = 100 (bottom) for a degree of complementarity of

κ = 1.5 (left) and κ = 1.8 (right).
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ure 5(c) and (d). They are smooth over the whole domain. We further assume that

the economy initially is in the symmetric steady state (xS, xS). At time T = 100, the

stock of resource 1 is reduced by ∆1 = 0.25 with probability p = 0.5, while there is no

shock to the stock of resource 2 (∆2 = 0 with probability p = 1). Next, we derive the

optimal time path before the shock by numerically solving the open-loop optimization

problem (17), using the previously computed value function V (x1, x2) to determine the

appropriate transversality conditions.15 The resulting time paths for the two resource

stocks are shown in Figure 5(e) and (f).

Consistent with intuition, the optimal stock size of resource 1 increases over time

to insure against the potential shock at T = 100. To increase the stock of resource 1,

harvest has to be reduced. As a consequence, harvest of the complementary resource 2

decreases as well, and the stock of resource 2 also increases. Still, two additional results

are surprising. First, the anticipated effect of the shock starts affecting the optimal

management plan only a relatively short period before the negative shock hits (with

a 50% probability) at time T = 100; for t / 75, the optimal steady state is still the

symmetric steady state (xS, xS). Second, the optimal trajectories of x1 are very similar

for the two values of κ. The considerably lower resilience of the economy for κ = 1.8

has hardly any influence on optimal management before a shock hits the economy.

These results are surprising, especially because Polasky et al. [16] conclude that

the impact on optimal management of the probability of a regime shift can be quite

substantial. However, our paper differs from theirs in that we focus on the role of

consumer preferences regarding two resources, whereas Polasky et al. analyze the case

where a negative disturbance affects the parameters of the growth function of a specific

resource. In their analysis, the system switching to a bad state reduces the profits of

of degree 70 in the domain [0.01, 0.99]× [0.01, 0.99]. Approximation residuals are below 10−7 over the

whole domain.

15We use Matlab’s built in solver for boundary value problems, bvp5c.
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resource harvesting substantially, and hence it pays to invest to prevent the system flip

taking place. In our case, however, the benefits of preventing collapse are increasing in

the extent to which society is dependent on resource conservation, but so are the costs

of preventing collapse. If the degree of complementarity is large (small), the benefits of

preventing the resources to jump into the basin of attraction of the bad equilibria are

large (small), but the costs of doing so (in terms of reduced instantaneous welfare) are

large (small) too.

For illustration, we also compute the optimal path of the economy for an initial state

(x1(T )−∆1, x2(T )), using the closed-loop solution to the optimization problem given by

the value function. The resulting trajectories are also shown in Figure 5(a) and (b). For

the lower degree of complementarity, κ = 1.5, the symmetric steady state is ultimately

approached again after the shock. For the higher degree of complementarity, κ = 1.8,

by contrast, the optimal steady state after the shock is the corner steady state (0, 1).

6 Conclusion

In this paper we analyzed how consumer preferences affect the resilience of optimally

managed, natural-resource-dependent economies. We focused on two characteristics of

preferences, the degree of complementarity of resources in the satisfaction of human

needs, and the social discount rate. We derived conditions on the degree of complemen-

tarity and on the discount rate for which the optimal dynamics of resource use features

multiple optimal steady states and path dependence. We did so assuming symmetric

resources – there are two different stocks, but they share the same biological character-

istics. In this setting, we established that if parameters are such that the symmetric

steady state stocks are larger than the maximum sustainable yield ones, this symmetric

steady state is always stable, independent of whether the two resources are substitutes

in consumption, or complements. If the symmetric steady state stocks are positive but
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smaller than the maximum sustainable yield levels (the more relevant case), the degree

of complementarity crucially affects the stability of the symmetric steady state.

The results are surprising. While one may expect that society is more willing to

invest in regenerating relatively scarce resources if they are complements in consumption

than if they are substitutes, we find the exact opposite. If resources are substitutes in

consumption, the optimally managed economy always ends up in the symmetric steady

state – independent of the initial stocks. If resources are complements in consumption,

however, the economy is characterized by limited resilience; alternative steady states

exist that are locally stable, and the symmetric steady state may even become unstable

– if the discount rate is sufficiently high. The intuition behind these results is the

following. Regeneration of the relatively small stock requires reducing the rate at which

it is being harvested. Such a reduction reduces instantaneous welfare, but more so if the

two resources are complements in consumption than if they are substitutes – the higher

the degree of complementarity, the less feasible it is to compensate the reduced use of

one resource by increased use of the other. Hence, the benefits of moving the system to

its symmetric steady state are larger the higher the degree of complementarity, but so

are its costs. And if society is sufficiently impatient, it may even be optimal to always

deplete the initially least abundant resource.

So, we find that society’s willingness to invest in regenerating stocks is smaller the

stronger the complementarity between the two resources, and hence one would expect

that anticipating this, society would be willing to apply more stringent ‘safe minimum

standards’ in the face of a random shock if it considers resources to be complements

rather than substitutes. Surprisingly, and in contrast to [16], we find very little evidence

for this; in anticipation of negative shocks society is willing to invest in larger stocks

to better buffer the economy against them, but numerical analyses suggest that this

willingness is not very sensitive to the degree of complementarity. Again, the benefits of

investing in greater stocks are larger the more dependent society is on these resources,
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but the costs of building up stocks are larger too. The higher the degree of comple-

mentarity, the smaller the basin of attraction of the symmetric steady state, but the

propensity to invest in larger buffers is not much greater.

Modern societies are admittedly more complex than the one in our model, if only

because they exploit more than two resources. These resources may be pairwise com-

plements, or substitutes. The higher the level of aggregation of the analysis (e.g., at

the ecosystem level or even at the level of the Earth’s climate system), the higher the

degree of complementarity tends to be. This paper shows that the fact that society is

more dependent on the conservation of the higher-level resources such as clean drinking

water, fertile soil, or the Earth’s climate system, does not necessarily guarantee their

sustainable use.

Appendix

A.1 Conditions for optimal resource use

Rewriting (3) as ej = hj/ (qjxj), the current-value Hamiltonian is as follows:

H =
γ

1− κ
ln

[∑
j=1,2

h1−κj

]
+ ω

(
1−

∑
j=1,2

hj
qj xj

)
+
∑
j=1,2

µj [fj(xj)− hj] (19)

where µj is the shadow price of the resource stock j; j = 1, 2. The first-order conditions

of the social planner’s optimization problem are

γ h−κj

[∑
i=1,2

h1−κi

]−1
=

ω

qj xj
+ µj ≡ πj j = 1, 2 (20)

ω hj
qj x2j

=
[
δ − f ′j(xj)

]
µj − µ̇j j = 1, 2 (21)

together with the transversality conditions e−δ t µj xj
t→∞−−−→ 0 and for given initial sizes

of the resource stocks xj(0) = xj0 for j = 1, 2. For the following analysis, it is more con-

venient to use the shadow price of resource consumption, πj (as defined in Equation 20)

than the shadow price of the resource stock, µj.
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From Equation (20) we obtain harvest as a function of the shadow prices,

hj = γ
π
− 1
κ

j∑
i=1,2

π
1− 1

κ
i

. (22)

Equation (22) shows that a positive consumption of the numeraire commodity is guar-

anteed because
∑

j=1,2
ω

qj xj
hj ≤

∑
j=1,2 πj hj = γ < ω, where the last inequality holds

by assumption.

A.2 Proof of Lemma 1

In a symmetric steady state xS1 = xS2 = xS, which implies that πS
1 = πS

2 = πS; see (10).

From (9) we infer that xS is implicitly determined by 2 πSf(xS) = γ. Using (10) and (5),

this condition can be rewritten as

(
2 r xS + δ − r +

γ q

ω

)2
= (δ + r)2 +

(γ q
ω

)2
.

Solving for xS yields the unique positive solution given in Equation (13) provided

r − δ − γ q

ω
+

√
(δ + r)2 +

(γ q
ω

)2
> 0

⇔ δ (γ q − 2 r ω) < γ q r.

A.3 Proof of Proposition 1

(i) We will use in the following that π′(xS) < 0. To prove this, note first that any real-

valued solution to (9) requires that πj, j = 1, 2 is positive, which means that δ > f ′(xj)

for both resource stocks in steady state. Differentiating (10) with respect to xj and

using (5) yields

π′j(xj) = −ω
q

2 (r xj)
2 + δ (δ − r + 4 r xj)

x2j (δ − r + 2 r xj)
2 < 0

as xj > (r − δ)/(2 r). In a similar way, it is easily verified that π′′j (xj) > 0.
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(ii) We now analyze the local stability of the symmetric steady state by considering

the Jacobian matrix of the dynamic system (7) and (8). Using 2πS f(xS) = γ, in

symmetric steady state the Jacobian is equal to

JS =



f ′(xS) 0 κ+1
κ

f(xS)
2π(xS)

κ−1
κ

f(xS)
2π(xS)

0 f ′(xS) κ−1
κ

f(xS)
2π(xS)

κ+1
κ

f(xS)
2π(xS)

−
(
δ − f ′(xS)

)
π′(xS) 0 δ − f ′(xS) 0

0 −
(
δ − f ′(xS)

)
π′(xS) 0 δ − f ′(xS)


(23)

where xS is stock size and π(xS) is the shadow price of harvest in the symmetric steady

state, both of which are independent of κ (see Lemma 1). The four eigenvalues of the

Jacobian are

λ1,2 =
1

2

[
δ ±

√
(δ − 2 f ′(xS))2 − 4

π′(xS)

π(xS)
f(xS) (δ − f ′(xS))

]
(24)

λ3,4 =
1

2

[
δ ±

√
(δ − 2 f ′(xS))2 − 4

π′(xS)

κπ(xS)
f(xS) (δ − f ′(xS))

]
. (25)

All four eigenvalues are real valued, as π(xS) > 0, f(xS) > 0, π′(xS) < 0, and δ > f ′(xS).

It follows directly that λ1 > 0 and λ3 > 0. (xS, xS) is always stable (independent of κ)

if both λ2 and λ4 are negative. The last eigenvalue λ4 is negative if

δ2 <
(
δ − 2 f ′(xS)

)2 − 4
π′(xS)

κπ(xS)
f(xS)

(
δ − f ′(xS)

)
⇔ 0 > f ′(xS)

(
κ+

π′(xS)

π(xS)

f(xS)

f ′(xS)

)
(26)

and similarly the condition for λ2 < 0 is

0 > f ′(xS)

(
1 +

π′(xS)

π(xS)

f(xS)

f ′(xS)

)
. (27)

If xS > 1/2 ≡ xMSY, we have f ′(xS) < 0, so that conditions (26) and (27) are always

met.

(iii) The stock sizes in the symmetric steady state are larger than the maximum
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sustainable yield stocks xMSY = 1/2 if and only if

r − δ − γ q

ω
+

√
(δ + r)2 +

(γ q
ω

)2
> r

⇔ (δ + r)2 +
(γ q
ω

)2
>:
(
δ +

γ q

ω

)2
⇔ δ

(
1− γ q

r ω

)
+
r

2
>:0

which holds if either γ q < r ω or δ < r2 ω/ (2 (γ q − r ω)) ≡ δMSY.

A.4 Proof of Proposition 2

We shall first show that for κ < 1 we have x′j(xi) > 0 for all xi. Total differentiation

of (9) leads to

π′j(xj)
dxj
dxi

= π′i(xi)

[
γ

πi f(xi)
− 1

] κ
κ−1

−
γ
[

γ
πi f(xi)

− 1
] 1
κ−1

κ−1
κ
f(xi)

[
π′i(xi)

πi
+
f ′(xi)

f(xi)

]
(28)

The first term on the right hand side is negative because π′i(xi) < 0 (cf. Appendix A.3)

and because γ > πi f(xi); see (9). The last factor (in brackets) of the second term on

the right hand side is negative, too:

π′i(xi)

πi
+
f ′(xi)

f(xi)
= −2 [r xi]

2 + δ [δ − r + 4 r xi]

[δ + r xi] [δ − r + 2 r xi]
+

1− 2xi
xi [1− xi]

= −δ [δ + 2 r xi] + r2 [1− 2xi [1− xi]]
[1− xi] [δ + r xi] [δ − r + 2 r xi]

< 0. (29)

We use this to show that for κ < 1 any steady state must be symmetric. Let (x1, x2) =

(xS, xS) be a symmetric steady state. Since xj(xi) is monotonically increasing, it may

be inverted, such that a steady state is determined by x2(x
S) = x−11 (xS). For symmetric

resources, we have x2(x) = x1(x) for all x. Assume without loss of generality that

x′j(x
S) > 1. Then, x′i(x

S) = 1/x′j(x
S) < 1. Thus, no asymmetric steady state is possible.

Furthermore, only one symmetric steady state with xS > 0 exists (Lemma 1).

For κ < 1, the problem is also well-defined if one of the resource stocks is zero

from the very beginning. In this case, the first-order conditions for the optimal the
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steady-state stock of the resource with positive stock reads

ω hj
q x2j

=
[
δ − f ′j(xj)

] [ γ
hj
− ω

q xj

]
(30)

ω

γ q
r2 (1− xA)2 =

[
δ − r (1− 2xA)

] [
1− ω

γ q
r (1− xA)

]
. (31)

Solving for xA leads to (15). It is straightforward to verify that this steady state is at a

positive stock level if (14) holds.

A.5 Proofs of Lemmas 2 and 4

By Condition 1, we have f ′(xS) > 0. With this, the eigenvalue λ4 of the Jacobian at

the symmetric steady state (see Appendix A.3) is negative if κ < κ̂(δ) and positive if

κ > κ̂(δ), as is easily verified using (26).

Next, we show that κ̂ is monotonically decreasing with δ and that κ̂(δ) > 1. This

shows that the eigenvalue λ2 of the Jacobian at the symmetric steady state (see Ap-

pendix A.3) is always negative. Hence, the symmetric steady state is stable if κ < κ̂(δ)

and unstable if κ > κ̂(δ).

As f ′(xS)
δ→δMSY−−−−−→ 0, we have κ̂(δ)

δ↘δMSY−−−−−→ +∞. By differentiating (16) with respect

to δ for δ > δMSY (Condition 1), we obtain

κ̂′(δ) = κ̂(δ)

(
π′′(xS)

π′(xS)
− π′(xS)

π(xS)
+
f(xS)

f ′(xS)
− f ′′(xS)

f ′(xS)

)
dxS

dδ

which is negative, as dxS/dδ < 0 (cf. Lemma 1); π(xS) > 0, π′(xS) < 0, and π′′(xS) > 0

(cf. Appendix A.4); and as f(xS) > 0, f ′(xS) > 0 (because δ > δMSY) and f ′′(xS) < 0.

By Condition 1 and according to Lemma 1 the minimal xS is

lim
δ→∞

xS = 1− γ q

2 r ω
> 0.

Under Condition 1, we thus obtain

lim
δ→∞

κ̂(δ) =
γ q
2 r ω

γ q
r ω
− 1

=
γ q

2 (γ q − r ω)
=

γ q

γ q − (2 r ω − γ q)
> 1.
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A.6 Proof of Lemma 3

We shall consider the xj(xi) isoclines, as given by Equations (11) and (12). With

r1 = r2 = r, K1 = K2 = 1, and q1 = q2 = q, these two equations become

xj(πj) =:
1

4

√ 8 δ ω

r q πj
+

(
δ − r
r
− ω

q πj

)2

− δ − r
r

+
ω

q πj

 (32)

πj(xi) =
ω

q xi

δ + r xi
δ − r + 2 r xi

[
γ q

ω r

δ − r + 2 r xi
(δ + r xi) (1− xi)

− 1

] κ
κ−1

. (33)

First, from Equation (33) we have πj(xi)
xi→1−−−→ +∞ and hence xj(xi)

xi→1−−−→ 0 from

Equation (32).

We shall secondly show that for δ > δ0 we have xj(xi)
xi↘0−−−→ 0, while for δ < δ0

a xi > 0 exists such that xj(xi)
xi↘xi−−−→ +∞. Consider the expression in brackets in

Equation (33). For the case δ < δ0 it is zero when

xi =

√(
δ + r

2 r

)2

+
(γ q
r ω

)2
−
(
δ − r
2 r

+
γ q

r ω

)
≡ xi > 0.

Hence, πj(xi) = 0 and xj(xi)
xi↘xi−−−→ +∞ by Equation (32).

For δ > δ0, the expression in brackets in Equation (33) is positive even for xi = 0.

Thus, πj(xi)
xi↘0−−−→= +∞ and xj(xi)

xi↘0−−−→ 0 by Equation (32).

These two arguments together imply that for δ > δ0, we have x2(x1(x)) < x for x

sufficiently close to 1, while for δ < δ0, we have x2(x1(x)) > x for x sufficiently close

to 1.

Third, for κ < κ̂(δ) the symmetric steady state is locally stable (Lemma 2) which

implies that x2(x1(x
S + ε)) > xS + ε for some small ε > 0 (put differently, we have

x′j(x
S) < −1). For κ > κ̂(δ) the symmetric steady state is locally unstable (Lemma 2)

which implies that x2(x1(x
S + ε)) < xS + ε for some small ε > 0 (put differently, we have

x′j(x
S) > −1).

Now for 3a), we have x2(x1(x
S+ε)) < xS+ε for some small ε > 0 and x2(x1(x)) > x for

some x sufficiently close to 1. Since x2(x2(·)) is continuous, the equation x2(x1(x
A)) = xA
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must have a solution xA > xS. As the symmetric steady state is unstable, the asymmetric

steady states are stable [24].

As for 3b), we have x2(x1(x
S+ε)) > xS+ε for some small ε > 0 and x2(x1(x)) < x for

some x sufficiently close to 1. Since x2(x2(·)) is continuous, the equation x2(x1(x
A)) = xA

must have a solution xA > xS. As the symmetric steady state is stable, the asymmetric

steady states are unstable [24].
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