
 

 

 

 

Model choice and size distribution: 

a Bayequentist approach 

University of Lüneburg 
Working Paper Series in Economics  

 
No. 265 

 
February 2013 

 
www.leuphana.de/institute/ivwl/publikationen/working-papers.html 

 

ISSN 1860 - 5508 

 
by 

John-Oliver Engler and Stefan Baumgärtner 



Model choice and size distribution:

a Bayequentist approach

John-Oliver Engler∗ and Stefan Baumgärtner
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Abstract

We propose a new three-step model-selection framework for size distributions

in empirical data. It generalizes a recent frequentist plausibility-of-fit analysis

(Step 1) and combines it with a relative ranking based on the Bayesian Akaike

Information Criterion (Step 2). We enhance these statistical criteria with the

additional criterion of microfoundation (Step 3) which is to select the size

distribution that comes with a dynamic micro model of size dynamics. A

numerical performance test of Step 1 shows that our generalization is able

to correctly rule out the distribution hypotheses unjustified by the data at

hand. We then illustrate our approach, and demonstrate its usefulness, with a

sample of commercial cattle farms in Namibia. In conclusion, the framework

proposed here has the potential to reconcile the ongoing debate about size

distribution models in empirical data, the two most prominent of which are

the Pareto and the lognormal distribution.

JEL Classification: C12, C52, D30, D31, O44

Keywords: model choice, model selection, hypothesis testing, size distributions, Gibrat’s

Law, Pareto distribution, rank-size rule, environmental risk, semi-arid rangelands, cattle

farming

∗Corresponding author, Sustainability Economics Group, Leuphana University of Lüneburg, P.O. Box
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1 Introduction

The identification of theoretical size distribution models in empirical data has been a topic

of considerable debate in economics since Vilfredo Pareto’s (1896) seminal work on the

distribution of wealth in Italy. The correct identification of theoretical size distribution

models has remained a contentious issue that has continued to resurface in the economic

literature ever since (Gibrat 1931, Champernowne 1953, Fisk 1961, Dagum 1977, Ban-

dourian et al. 2002, Eeckhout 2004) and is still generating lively discussions (Lévy 2009,

Eeckhout 2009). The relevance of this field comes from the fact that ‘models on popu-

lation dynamics and economic growth have implications on the distribution of city sizes’

(Lévy 2009: 1672). Similarly, any model on income dynamics implies a certain income

distribution. It has therefore been a longstanding research interest to identify empirical

evidence for these theoretical models. Entities that are usually described by their size dis-

tribution over a population include: individual income or wealth in a society, population

numbers of cities in a certain region (country, continent, world) or firm sizes1 in an econ-

omy. To date, the two most influential theoretical concepts related to size distribution

models are Pareto’s Law (Pareto 1896) which is sometimes also referred to as rank-size

rule – meaning power law behavior in the upper tail of the distribution – and Gibrat’s

Law of Proportionate Effect (Gibrat 1931) which implies a lognormal size distribution.

There are a number of methodological problems specific to size-distribution fitting and

related model choice problems. First, as pointed out by Clauset et al. (2009) ordinary

least-squares (OLS) regressions do not work reliably in the context of fitting theoretical

size distribution models to empirical data, primarily because OLS regressions do not

account for the crucial characteristic of a probability density function that the integral

over its support is one. Second, while high values of R2 do explain what fraction of

the variance in the data is explained by the model, they cannot confirm or rule out the

hypothesis that the data actually follow a certain distribution.2 One cannot easily fix this

by employing the Kolmogorov-Smirnov test since it has been shown to produce biased

p-values in case of distribution fitting (Clauset et al. 2009, Bubelny 2011). Third, a

p-value of any frequentist hypothesis test cannot be interpreted as probability that the

1This entity can be measured by business volume or staff numbers, for example.
2Nor do low values of sum of squared errors (SSE) or sum of absolute errors (SAE).
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hypothesis actually holds true which is impractical in the case of several unrejected models

from which the researcher would like to choose the ‘best’ one. For actual model comparison

and selection, the likelihood ratio and χ2 tests are frequentist methods that have been

proposed to compare the relative performance of two models at a time (cf. Neyman and

Pearson 1933, Greenwood and Nikulin 1996). However, as pointed out by Raftery (1986),

the likelihood ratio and χ2 tests are subject to the large-sample error of the first kind3,

let alone that comparing only two models at a time seems rather impractical.

In this paper, we address these three problems. Our major contribution is the for-

mulation of a three-step statistical model-selection framework for size distributions in

empirical data. Inspired by the remark by Efron (2005) who observed a division between

‘Bayesians, frequentists and scientists’, we offer a combination of frequentist (Step 1) and

Bayesian (Step 2) statistical methods unified into one framework, together with a formal-

ization of the notion of microfoundation (Step 3). By microfoundation, we refer to the

existence of a micro model that leads to the observed overall size distribution. We will

hence refer to our framework as Bayequentist.

Step 1 is a generalization of the plausibility-of-fit algorithm by Clauset et al. (2009)

which they have proposed and tested in the context of identifying Pareto’s Law in empiri-

cal data. We take up their algorithmic structure, generalize it to the case of arbitrary size

distributions and test its performance with synthetic data drawn from a known popula-

tion. We propose to combine this in the second step with Akaike’s Information Criterion

(Akaike 1973), AIC for short, from which it is possible to calculate model weights to obtain

a model ranking (Burnham and Anderson 2004) to complement the results from Step 1.

In the third step, we propose to introduce an additional criterion into the model selection

process that goes beyond purely statistical criteria (‘not just the numbers’, Burnham and

Anderson 2004). This third criterion asks the ‘So what?’ question, namely what addi-

tional information a good fit has to offer other than being descriptively precise. We argue

that out of two candidate models that pass the minimum statistical requirements, one

should prefer the one that comes with a microfoundation. Our scheme draws inspiration

from the fact that we typically do not only want an answer to the question ‘Which model

fits best?’, but also to the question ‘What can a good fit of a certain model to empiri-

cal data tell us about the system it describes?’. Altogether, our framework circumvents

3This refers to a systematic rejection of even a good model in large enough samples.
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the problems of OLS regressions by resorting to the method of maximum likelihood, it

provides a general hypothesis test algorithm that gives more accurate p-values than the

Kolmogorov-Smirnov test, it gives a relative model ranking that cannot be inferred by

comparison of p-values, and it contains a criterion that addresses the model’s explanatory

power.

We illustrate our Bayequentist framework, and demonstrate its usefulness, with a

sample of 399 commercial cattle farms from Namibia’s semi-arid rangelands (Olbrich et

al. 2009; Olbrich et al. 2012). This sample is very well-suited for this purpose for

several reasons: (1) The sample of commercial cattle farms in Namibia is a sample of

Namibian firms and as such, its analysis contributes to the literature on firm size, firm

size distribution and firm growth from an original and fresh perspective. (2) The data set

is unique and of excellent detail. (3) It happens to be a very illustrative example for the

functioning of all three steps of our framework and thus demonstrates how the framework

might help to unify the discourse between Gibrat’s Law and Pareto’s Law that dominate

the literature. (4) As for illustration of Step 3, Namibian commercial cattle farming is a

rain fed business which means that the high variability in rain fall is the farm manager’s

main source of income risk. Hence, environmental risks and the farmers’ risk preferences

are key micro-determinants of the size distribution observed at the macro-level. There is

thus a microscopic theory allowing us to test for a macroscopic model in the data.

Our paper is organized as follows. In Section 2, we contextualize our contribution

in relation to the literature. In Section 3, we explain in detail our Bayequentist frame-

work for the detection of a peculiar size distribution in empirical data and complement

the explanations with numerical performance tests. Section 4 illustrates the proposed

framework by completely executing the procedure for the Namibian commercial cattle

farm data. Section 5 discusses achievements and limitations of our framework. Section 6

concludes.

2 Relation to the literature

The literature on size distributions has developed in the fields of economics and statis-

tics. The economics literature can roughly be divided into two groups. In the first
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group, contributions deal with one particular size distribution model, either presenting

evidence for the validity of that model in one or several data sets, or presenting a the-

oretical derivation of that very size distribution from a set of economically motivated

assumptions, or a mixture of both. Apart from the founding works of Pareto (1896) and

Gibrat (1931), more recent examples in this group include Mansfield (1962), Hart and

Oulton (1996), Gabaix (1999), Pinkovskyi and Sala-i-Martin (2009), Chotikapanich et

al. (2012), González-Val et al. (2012), Toda (2012) and Tsou (2012). An extensive review

of the literature in this strand concerned with Gibrat’s Law is given by Sutton (1997).

The second group comprises contributions that compare and discuss the goodness-of-fit of

at least two – but often more – theoretical size distribution models in empirical economic

data. Recent examples in this strand are Evans (1987), Bandourian et al. (2002), Eeck-

hout (2004) and Giesen et al. (2010) or the very recent debate between Lévy (2009) and

Eeckhout (2009) about the goodness-of-fit of the lognormal and the Pareto distributions

of the U.S. city size distribution. The body of statistics literature on the subject deals

with the problem of model choice from both a technical and a philosophical perspective.

Most relevant for this paper are the works of Kass and Raftery (1995), Burnham and

Anderson (2004), Reed and Jorgensen (2004), Efron (2005) and Clauset et al. (2009).

In this paper, we aim at unifying these major strands of literature. We maintain that

one possible source of the described heterogeneity and – to some extent – disagreement

in the literature, originates from the methodological issues that we have summarized in

the introduction. For example, the disagreement between Lévy and Eeckhout (c.f. Lévy

2009, Eeckhout 2009 following the original paper Eeckhout 2004) boils down to a lack

of consensus of how to tell whether some fit is actually supporting the hypothesis suffi-

ciently well when dealing with empirical size distributions. Here, we suggest a statistical

framework to answer this crucial question.

3 Bayequentist model choice for size distributions

This section explains our proposed three-step Bayequentist statistical model-selection

framework and its components. After definition of notation and introduction of the rele-

vant size distribution models from the literature in Section 3.1, we detail the three steps
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one after the other: in Section 3.2, we elaborate on our algorithm based on Clauset et

al. (2009) and test its performance (Step 1). In Section 3.3, we explain how to obtain

model probabilities from a Bayesian scoring method (Step 2), and we discuss the underly-

ing philosophical principles. Section 3.4 introduces the criterion of model microfoundation

that aims at the scientific significance of the models (Step 3) and thereby complements

the first two steps.

3.1 Notation and candidate size distributions

To establish notation, for a data sample x = {x1, . . . ,xN} where xi denotes the size

of entity i and N is the total number of entities in the sample, and a candidate size

distribution model p(Θ1, . . . ,ΘM |x) with parameters Θk where k = 1 . . .M , the associated

likelihood function is obtained by

L(Θ1, . . . ,ΘM |x) =
N∏
i=1

p(Θ1, . . . ,ΘM |xi). (1)

We denote the parameter values that maximize this likelihood function given the observed

data x by Θ̂1, . . . ,Θ̂M . The logarithm of the likelihood function (Equation 1) is called

loglikelihood for short and is denoted by L(Θ1, . . . ,ΘM |x). The set that contains the

candidate size distribution models is referred to as M and its cardinality is denoted by

|M|. After any step in the selection procedure, the set of remaining models is denoted by

an extra prime so thatM′′ means the set of candidate size distribution models remaining

after Step 2 and so on. We assume that, initially, |M| > 1 as there would not be a

model choice problem otherwise. However, as will be discussed throughout this section,

a singleton, e.g. |M′| = 1, or even an empty set may occur at some later point in the

process.

From the literature, we identified six different size distribution models that have re-

peatedly been proposed to describe empirical data. Kleiber and Kotz (2003) classify these

size distribution models commonly found in the economics literature into three functional

superforms: the generalized beta distribution of the second kind (GBII), the generalized

Gamma distribution (GG) and the lognormal group. GBII contains the Dagum (Dagum

1977) and the Fisk (Fisk 1961) distribution, GG contains the Weibull (Bartels and van
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Metelen 1975) and the Gamma distribution (Ammon 1895) and the lognormal supergroup

contains the lognormal, the Pareto (Pareto 1896) and the double Pareto lognormal distri-

bution (dPlN, Reed and Jorgensen 2004). In Figure 1, we give exemplary plots of these

models while their explicit functional forms and interrelations are detailed in Appendix

A (Table 4 and Figure 8).
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Figure 1: The six most common size distributions in economic literature.
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3.2 Step 1: Plausibility-of-fit

We assess the statistical plausibility of the fit generalizing the method proposed by Clauset

et al. (2009) for the identification of power-law (i.e. Pareto) distributions in empirical

data. The intuition behind their method is as follows: any sample randomly drawn

from a power-law distribution will feature deviations from a true power-law distribution.

Moreover, the smaller the sample size N , the larger the expected deviations. Hence, even

if we knew for sure the population followed a power-law distribution, we would nonetheless

find deviations from a true power law in any finite random sample from this population.

Thus, the question is how to distinguish plausible deviations from those ones that make the

power-law hypothesis highly unplausible. Clauset et al. (2009) have proposed the following

hypothesis test algorithm: After the power-law distribution is maximum-likelihood (ML)

fit to the original data sample of length N which yields Θ̂1, . . . ,Θ̂M , the corresponding

Kolmogorov-Smirnov (KS) test statistic is computed. The next step is then to calculate

the Z KS statistics of ML fits of the power law to Z synthetic data samples of length

N drawn from a true power law with parameters Θ̂1, . . . ,Θ̂M . The p-value of this test is

then simply the fraction of synthetic data samples that have a KS test statistic greater

than the original sample that is subject to the power-law hypothesis H0. The absolute

error estimate of the obtained p-value decreases with the number of synthetic data sets

Z as given by

ptrue = p±
√

1

4Z
. (2)

Thus, a comparably modest effort of Z = 2500 synthetic data sets would bring the absolute

error estimate down to ±0.01. Clauset et al. (2009) have shown that the procedure will

– on average – be able to correctly rule out the exponential and lognormal distributions

as alternative hypotheses for samples larger than 200 data points.

Clauset et al. (2009) have suggested and numerically investigated this test procedure

with the power-law distribution specifically in mind. They demonstrate that – given large

enough samples – their method can be expected to reject the power-law hypothesis for

samples drawn from the lognormal or exponential distributions and that the method is

not prone to large-sample errors of the first kind (cf. Clauset et al. 2009: Figure 4.1).

Yet, the power-law (Pareto) distribution is a very special model. While they remark
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that their test should in principle be suitable for any distribution – as long as there exist

methods to create random numbers from that distribution – a generalized version of their

plausibility-of-fit test has not been used or investigated so far. In this paper, we take up

this point and generalize the algorithm as follows:

1. ML estimate the parameters Θ̂1, . . . ,Θ̂M of the hypothesized distribution (H0) based

on the data sample x = {x1, . . . ,xN}.

2. Compute the KS test statistic of the obtained fit. Jitter4 the empirical data if ties

are present.

3. Generate Z synthetic data samples of length N drawn from the hypothesized dis-

tribution with parameters Θ̂1, . . . ,Θ̂M and calculate their respective KS statistic.

4. Obtain the p-value of H0 as fraction of the number of synthetic data samples that

have a KS statistic greater than the data sample x and the number of synthetic

data sets Z.

5. Reject H0 if p < 0.1, do not reject else.

Our algorithm departs from the one presented by Clauset et al. (2009) in stages 2

and 3. In stage 2, we have added the jittering component to avoid conservative5 p-values

that may result from tied data. In stage 3, we have removed the explicit reference to

the Pareto distribution in favor of the general expression ‘hypothesized distribution’. The

threshold p-value of 0.1 is the value recommended by Clauset et al. (2009). Hence, this

modified test can in principle be applied to any statistical size distribution model since

it is always possible to construct random numbers based on a known probability density

function.6

For performance assessment of this generalized algorithm, we run two numerical tests:

First, we draw numerical random samples from a true lognormal distribution with ran-

domly changing parameters at each draw. We then calculate the p-values of each sample

for the following hypothesized distributions: lognormal, dPlN, Weibull and Dagum and

4‘Jittering’ is a standard procedure to break ties in empirical data samples. It refers to adding very small
random numbers from a uniform distribution with very small support symmetric to the origin to each
sample element (e.g. Mease and Buja 2007).

5Here, ‘conservative’ means that the p-values returned by the test are too optimistic, hence implying
erroneous results.

6Two major methods exist for this: the acceptance-rejection method and the inversion method (von
Neumann (1951) and Devroye (1986), respectively).
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take the average of all p-values separately for each synthetic lognormal test sample. Sec-

ond, we repeat this procedure for synthetic samples from true dPlN distributions, again

with randomly selected parameters at each iteration. We plot the results of the testing

procedure in Figure 2 where we omit nested distributions.7 The results demonstrate that
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Figure 2: Average p-values of various size distribution hypotheses for synthetic data samples
drawn from (a) a lognormal and (b) a double-Pareto lognormal distribution. The dashed line
indicates the threshold p = 0.1 below which the hypothesized distribution is ruled out.

the method is in principle suitable to identify a true lognormal (Figure 2a) or true dPlN

distribution (Figure 2b) in finite data samples as the average p-value remains above the

threshold of p = 0.1 only for the distribution that the samples were actually drawn from.

On the other hand, Figure 2 also reflects the fact that it gets generally much harder to rule

out a distribution the more parameters it has. The two parameter Weibull distribution is

easily rejected in both cases since the average p-value remains slightly above 0.1 for very

small samples only (N = 75 for synthetic lognormal data, N = 100 for synthetic dPlN

data, Figure 2a and b, respectively). In contrast, the three parameter Dagum distribution

generally provides a much better fit to the data and is in consequence much harder to

reject (N ≥ 1000, Figure 2) although the sampling population does not follow a Dagum

distribution. Positively put, the true distribution is not ruled out, even for larger samples

(N ≥ 1000). Compared to the original version of the test, our numerical results suggest

that the generalized version may need greater data samples – depending on the competing

hypotheses (cf. Clauset et al. 2009) – to reliably rule out incorrect alternatives.

7We cannot expect – on average – to be able to rule out nested hypotheses. For example, because the
lognormal is contained in the dPlN, the average p-value of both hypotheses would behave quite similar
in Figure 2. And, by construction, the dPlN could not be ruled out for the synthetic lognormal samples.
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In summary, in Step 1, each element of the candidate size distribution set M is

checked for statistical plausibility-of-fit with the procedure presented here. Size distribu-

tion models with a p-value greater than 0.1 pass the test and become elements of M′.

Yet, it is not possible to infer a model ranking from the p-values obtained from Step 1

since all these p-values can tell us is how plausible H0 is compared to mere chance, and

not compared to another model. This is only possible with a Bayesian approach, which

we now turn to.

3.3 Step 2: Model ranking

Suppose that Step 1 has left a candidate setM′ with |M′| > 1. To infer a model ranking

based on the sample data, we propose to make use of the ‘weights of evidence’ (Burnham

and Anderson 2004) which are based on the Akaike Information Criterion (AIC, Akaike

1973). To recall, the AIC relies on the likelihood function L(Θ̂1, . . . ,Θ̂M) at the likelihood

optimum and the number M of parameters of the respective candidate size distribution

model:

AIC = −2 lnL(Θ̂1, . . . ,Θ̂M) + 2M. (3)

Since low AIC scores are better in terms of less Kullback-Leibler information loss from data

to model (Kullback and Leibler 1951), the criterion penalizes additional model parameters

by having their number M entering Equation (3) as a positive summand. The intuition

behind this is that, out of two candidate models with the same likelihood based on the

data, the more parsimonious one is selected, a principle known as Occam’s razor 8.

Based on the AIC scores, it is possible to infer a ranking of the different candidate

models according to their ‘Akaike weights’ (cf. Burnham and Anderson 2004) which make

a statement for each candidate model about the relative strength of evidence (‘weight of

evidence’, Burnham and Anderson 2004) in favor of one specific model given the data and

given the other elements ofM′. In Bayesian statistics, these weights reflect the posterior

model probability, i.e. the model probability given some prior and given the actual data.

8It is not possible to clearly ascribe this term to the mind of one person: In 1852, English philosopher
Sir William Hamilton (cf. Kaye 2007) coined the term after 14th century English logician William
of Ockham although Ockham never actually wrote the well-known phrase ‘shave away all but what is
necessary’ (Vogel Carey 2010). In fact, the roots of this principle can be traced back to the works of
Ptolemy (90− 168) and Aristotle (384− 322 BC) (Baker 2011).
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Burnham and Anderson (2004) suggest the following scheme to find these weights: take

the model with the lowest AIC score and rename that score AICmin. For every other

candidate model j where j = 1 . . . |M′|, calculate the number

∆j = AICj − AICmin. (4)

The so-defined ∆j are a measure for relative strength of evidence.9 By construction, the

model with the smallest AIC score has ∆ = 0 and, hence, the strongest support based on

the data and given the other elements of M′. From this, one obtains the Akaike weights

as

wj =
exp(−∆j/2)∑
l exp(−∆l/2)

(5)

where l = 1 . . . |M′|. These weights give a relative ranking of size distribution models

based on the data and the other size distribution models contained in the setM′. These

model weights wj have two essential interpretations, one from information theory (1) and

one from Bayesian statistics (2): (1) the higher the numerical weight value wj of some

model j, the smaller its information loss in the Kullback-Leibler sense; (2) as demonstrated

by Burnham and Anderson (2004), the Akaike weight wj of model j is equal to the

Bayesian posterior model probability Pr(j|x) conditional on the data x. Either way,

the Akaike weights imply a relative ranking, and we recommend to use this ranking to

complement the analysis from Step 1.

Philosophically, there is a lively debate on whether one should select the more par-

simonious or the more complicated out of two competing models. Methodologically, the

two extremes are the Bayes Information Criterion (BIC, Schwarz 1978), which penalizes

additional model parameters more drastically than the AIC10, and the likelihood crite-

rion (as advocated by Edwards 1972), which favors the model with the highest likelihood,

hence generally the one with most parameters. While there is no final consensus yet, the

literature on model selection seems to favor the ‘principle of parsimony’ over the ‘principle

of diversity’ (Leibniz 1968 [1710]). We do not share this view. Rather, we think that a

9It has been suggested to use the ∆js as stand-alone model selection criterion using the following classi-
fication (Burnham and Anderson 2004): ∆j ≤ 3: substantial support, 4 ≤ ∆j ≤ 7: moderate support,
∆j ≥ 10: essentially no support. We disagree with this view since the ∆j values critically depend on
the composition of the set of candidate size distribution models. Therefore, using only this criterion for
model selection might result in a choice from a set out of which all elements are overall implausible – in
the sense of Step 1 – descriptions of the original data.

10BIC = −2 lnL(Θ̂1, . . . ,Θ̂M ) +M lnN
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more complicated model that lies in M′ is not necessarily worse than a simpler model

within M′, because it has deeper explanatory power. In our Bayequentist framework,

we therefore advocate the use of the AIC in Step 2 because it provides a formal compro-

mise between a ranking based solely on the likelihood and the BIC. In other words, the

AIC formally strikes a balance between the principle of parsimony and the principle of

diversity.

As result of Step 2, we have the ordered set M′′. It contains the same elements

as M′, now ordered according to their relative weights of evidence which can also be

interpreted as size distribution model probabilities given the data and the other elements

in M′′. From a statistical point of view, the ordered set M′′ is the best we can do.

The framework up to this point is designed to capture statistical significance, both in an

absolute (model compared to mere chance, Step 1) and a relative sense (model compared

to the other candidates, Step 2). A procedure to also capture ‘scientific significance’ (cf.

McCloskey 1995) of the fits is introduced in the following step.

3.4 Step 3: Microfoundation

Is there any good reason not to stick to the statistically best-fitting model out ofM′′, but

to actually choose only number 2 or 3 from the ranking? Yes, we argue in this section,

there is.

We maintain that a size-distribution model should achieve both, a good fit to em-

pirical data (in the sense of Sections 3.2 and 3.3) and it should come with a plausible

microfoundation. By microfoundation, we refer to any microscopic model that can be

shown to generate the overall size distribution model. For example, Gibrat’s Law which

states that the individual size of a firm and its growth rate are independent can be an-

alytically shown to give rise to an overall lognormal firm size distribution (cf. Sutton

1997). In fact, our criterion of microfoundation is a relaxation of a proposition already

made in the context of income distributions: a good overall income size distribution model

should be based on a plausible stochastic model (Dagum 1983, Reed and Wu 2008). This

very particular understanding of microfoundation means that there exists a stochastic
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differential equation11

dXt = f(Xt,t)dt+ g(Xt,t)dWt (6)

that describes the size evolution increment dXt of the individual parts of the economic

system in question12 between two neighboring time instants t and t − dt. dWt is the

increment of a standard Wiener process with expected value E [Wt] = 0 and variance

Var [W 2
t ] = t for t > 0. Thus, the entirety of these individual parts constitute the overall

distribution at any time instant t. The actually observed size distribution in a random

sample from a population can be explained by the microscopic stochastic growth process

undergone by the individual constituents of the population.

This stochastic differential equation understanding of microfoundation is what can

be mostly found in the literature. It has the appeal of being able to analytically estab-

lish a relation between the dynamic behavior of individual parts of the system and the

overall size distributive outcome. However, this is only one out of many possible micro-

foundations. In a broader sense, this could be any agent-based, rule-based, or other type

of microscopic model. To answer the question whether a certain model not having an

analytical solution provides a microfoundation for a certain size distribution model, we

suggest to use the following criterion: Calculate the p-values using the plausibility-of-fit

algorithm from Step 1 for sufficiently many13 runs of the microscopic model separately.

If the resulting p-values are greater than 0.1 more often than not, then it cannot reliably

be ruled out that the microscopic model in question does indeed provide a statistically

plausible microfoundation for a certain size distribution model.

The bottom line here is that the identification of a particular size distribution in em-

pirical data allows for inference about the underlying individual growth dynamics if and

only if the size distribution comes with a suitable microfoundation. Our argument here

is that we suggest to deselect the size distribution models that do not have a microfoun-

dation. This may even imply that the statistically best-fitting size distribution models

from M′′ get deselected and are therefore not contained in M′′′ anymore. On the other

hand, the situation |M′′′| > 1 would imply to select the size distribution model fromM′′′

that is ranked highest in M′′ because the relative ranking in M′′′ remains the same as

11We refer to stochastic differential equations in the Itō (and not Stratonovich) sense of stochastic inte-
gration (cf. e.g. Higham (2001)). Yet, our argument does not depend at all on this specification.

12These may for example be individual wages of laborers or city sizes in a country.
13We consider 100 runs as the absolute minimum.
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in M′′ conditional on the fulfillment of the microfoundation criterion. If M′′′ is empty,

the best fit is given by the ranking in M′′. However, in this case, there is no inference

about the system and its constituents possible and the whole fitting exercise is devoid of

any insight other than the descriptive findings.

In summary, we have the set of size distribution models M′′′ with microfoundation.

i.e. with a microscopic model that gives a theoretical explanation of the observed overall

size-distributive outcome. Additionally, M′′′ inherits the statistical ranking from Step

2 so that the model ranked first in M′′′ is the statistically best-fitting model from the

original candidate set M that also has a microfoundation.

3.5 The framework at a glance

In Figure 3, we illustrate our Bayequentist framework for the identification of size dis-

tributions in empirical data. It consists of three steps which aim at different aspects we

think a good size distribution fit to empirical data should fulfill. First and foremost, in an

absolute sense, a good fit should describe the data plausibly (Step 1) which is assessed by

the frequentist method laid out in Section 3.2. Second, given the data, it should perform

sufficiently well relative to the competing size distribution models (Step 2), something

that cannot well be assessed by direct comparison of p-values. For this second step, we

propose to use the Bayesian approach described in Section 3.3. Third, a good fit of a

size distribution to empirical data should go beyond the descriptive finding alone by al-

lowing inferences about the underlying process that generated the observed distribution

(Step 3). In short, Steps 1 and 2 test for statistical significance and descriptive power,

Step 3 explores explanatory power which we see as a proxy for scientific significance (cf.

McCloskey 1995).

There are also situations where alterations of our scheme might become necessary

which may be caused by the researcher’s motivation or by procedural reasons. As to

motivation, it may not be of interest by what mechanism the size distribution was actually

generated on the micro level at all. Instead, only the best possible description of the data

might be relevant. In this case where the interest in the data is of purely descriptive origin,

Steps 1 and 2 are sufficient. However, most of the time when fitting theory to data, it

seems that the underlying question is not only ‘Which model fits best?’ but also ‘What
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Step 1: Plausibility-of-fit Step 2: Ranking Step 3: Microfoundation

statistical significance scientific significance

Figure 3: Our proposed Bayequentist model selection framework for size distributions in em-
pirical data: the frequentist Step 1 checks for absolute goodness-of-fit in that it checks the
plausibility of the hypothesis compared to mere chance. The Bayesian Step 2 checks for relative
goodness-of-fit as it assesses the plausibility of competing hypotheses compared to each other.
Steps 1 and 2 are both measures for statistical significance. Step 3 takes the analysis beyond a
merely statistical level and checks for explanatory power, which we see as a proxy for scientific
significance.

does a good fit tell us most likely about the population that the sample was drawn from?’

In this case, Step 3 needs to be included into the framework. As to procedural reasons

two things might happen that are – for the sake of clearness – not included in Figure 3

which are both related to Step 3: (1) no model may be left in the end meaning |M′′′| = 0,

or (2) more than one model passes Step 3, i.e. |M′′′| > 1. As to the case |M′′′| = 0,

one can either resort to the result of Steps 1 and 2 combined having the best possible

fit in statistical terms then or the set M was misspecified, which means that one needs

to reconsider the choice of the candidate size distribution models in M in general and

possibly start over again. On the other hand, if |M′′′| > 1, we recommend to re-examine

the model performances in Steps 1 and 2 and select according to the weights of evidence

(wj, Equation 5) ranking from Step 2. Ultimately, the research question sets the frame.
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4 Illustration: commercial cattle farms in Namibia

In this section, we illustrate our Bayequentist framework (cf. Section 3) with size data

of Namibian commercial cattle farms that have been surveyed in 2008 (Olbrich et al.

2009/2012). For illustrative purposes, we slightly deviate from the proposed procedure

in that we present the results in every Step for every model in the original candidate set

M. In Section 4.1, we describe the data set before we present the results of our model

selection framework in Sections 4.2 through 4.4.

4.1 Data

The data sample of 399 Namibian commercial cattle farms is described in detail by Olbrich

et al. (2009/2012). It contains two specifications of ‘size’: the number of cattle held on

the farm or area in hectares. The former has been hypothesized to be a ‘proxy for wealth’

(Olbrich et al. 2009: 19). Namibia’s semi-arid climate with a dry and a wet season in

each year causes cattle numbers on each farm to vary over the course of one year, for

example due to pasture and herd management. Therefore, each record contains entries

about the cattle count in November and in April. We take the average of these two values

to measure the farm size in terms of cattle number, thereby correcting for seasonal effects.

Deviations from the total sample size of N = 399 occur in our analysis are due to

incomplete data records: For example, the fits of different size distribution models to the

cattle-number data in this section is based on N = 351 data points, and fits to the area

data are based on N = 391 data points. We used the R programming language (version

2.13.0) for statistical data analysis and visualization as well as Python(x,y) (version 2.6.5)

for the graphs in Figure 4. Table 1 shows descriptive statistics of the data set while Figure

4 plots histograms of the cattle-number and area distributions.
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Table 1: Descriptive statistics of the sample of Namibian commercial cattle farms.

descriptive statistics cattle [number] area [ha]

sample size 351 391

minimum value 1 200

maximum value 3200 42244

mean 453 7969

median 374 6800

standard deviation 361 5504

skewness 2.37 2.50

kurtosis 10.5 11.0

Gini coefficient 0.391 0.336
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Figure 4: Distribution of commercial cattle farm sizes in Namibia as measured in cattle number
(a) and hectares (b).

4.2 Step 1: Plausibility-of-fit

Table 2 shows the results of Step 1 of our framework (Section 3). Although the Pareto

distribution does not have the same support as the other size distribution models and

although it is nested within the dPlN distribution, we include it here as a robustness check

for the plausibility-of-fit method. We base our estimations for each p-value on Z = 2500

synthetic data sets so that the resulting p-values are accurate up to approximately 1% (cf.

Equation 2). For the cattle-number data, we find that three size distribution models pass

the plausibility-of-fit test, the Dagum (p = 0.39), the Pareto (p = 0.33) and the dPlN

(p = 0.23) while none of the candidate size distribution models pass the plausibility-

of-fit test for the areal data. Because of nestedness, results for Pareto and dPlN are
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akin. Regarding parameter estimation, we find similar parameters for the lognormal, the

Pareto and the dPlN distributions which reflects again the nestedness of the Pareto and

lognormal within the dPlN. Indeed, we find a so-called Pareto coefficient of α = 3.22 that

is matched by a tail index of the dPlN of α = 3.52 for the cattle data. For the areal

data, we find α = 3.25 for the Pareto distribution and a tail index of the dPlN of 3.28.

Similarly, the parameters describing the dPlN’s lognormal main body14 – ν and τ – match

the estimates that we find for the lognormal fits (cattle number: ν = 6.22 compared to

µ = 5.80 and τ = 0.42 compared to σ = 0.89, area: ν = 8.96 compared to µ = 8.78 and

τ = 0.35 compared to σ = 0.68).

Table 2: Results of step 1: Maximum likelihood estimates of the model parameters along
with p-values. p-values significant at the 10% level are marked with ∗ and accurate up to 1%.
Models with a p-value smaller than 0.1 are deselected. In spite of having a smaller support than
the other candidate models, we also report the estimates for the Pareto distribution here as a
robustness check. Definitions of models can be found in Appendix A.

model cattle number parameter estimates p area parameter estimates p

lognormal µ = 5.80 (0.05), σ = 0.89 (0.03) 0.00 µ = 8.78 (0.04), σ = 0.68 (0.02) 0.00

dPlN α = 3.52 (3.76), β = 1.41 (0.17), 0.23∗ α = 3.28 (2.23), β = 2.05 (0.82), 0.00

ν = 6.22 (0.11), τ = 0.42 (0.10) ν = 8.96 (0.08), τ = 0.35 (0.08)

Pareto α = 3.22 (0.39), xmin = 460 (49) 0.33∗ α = 3.25 (0.39), xmin = 7000 (746) 0.02

Weibull k = 1.36 (0.05), λ = 494.85 (20.63) 0.00 k = 1.59 (0.06), λ = 8965.36 (301.18) 0.00

Dagum a = 3.16 (1.10), b = 559.65 (1.10), 0.39∗ a = 3.32 (1.09), b = 8366.58 (1.08), 0.00

p = 0.45 (1.18) p = 0.63 (1.18)

Fisk γ = 351.45 (1.04), δ = 2.14 (1.04) 0.04 γ = 6665.40 (1.04), δ = 2.74 (1.03) 0.02

Gamma Θ = 254.1 (20.28), κ = 1.77 (0.12) 0.00 Θ = 3000.00 (215.43), κ = 2.64 (0.17) 0.00

Thus, in this case, M′ contains two models, namely the dPlN and the Dagum distri-

bution for the cattle-number data while in case of the area data, M′ is empty.

4.3 Step 2: Model ranking

In Table 3, we list the results of the second step of our Bayequentist model selection

framework (Section 3.3). It does not make sense to include the Pareto distribution here

because, with this method, we can only meaningfully rank size distributions that have the

14Being a crossover of double Pareto and lognormal distribution, the dPlN roughly behaves like a Pareto
distribution (i.e. like a power law) in its tails and like a lognormal distribution else (Reed and Jorgensen
2004).
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same support domain. Also, we include the results of the area data for illustration in spite

of the negative result of Step 1. We document every important number in the ranking

process from left to right, and for each farm size data set (cf. Table 3): loglikelihoods

Lj, AIC scores and resulting Akaike weights wj. Loglikelihoods Lj of Dagum and dPlN

are almost identical with slight advantages for the Dagum model for the cattle data

(LdPlN = −2462.85 compared to LDagum = −2462.70) and the dPlN in case of the area data

(LdPlN = −3817.57 compared to LDagum = −3818.04). The AIC scores reflect this finding

as these two models rank first (Dagum, AIC = 4931.41 for cattle numbers and 7642.08 for

area data and second (dPlN, AIC = 4933.71 for cattle and 7643.15 for areal data). Using

the definition of the model weights wi (Equation 5), we find substantial evidence for both

of the two models (cattle number: wdPlN = 23.30% compared to wDagum = 73.66%, area:

wdPlN = 36.00% compared to wDagum = 61.40%). With a cumulative Akaike weight of

about 3% for both data sets, the other size distribution models play no significant role.

The quality of fit of the dPlN as well as the Dagum distribution to our data is illustrated

Table 3: Results of Step 2: Loglikelihoods (logarithm of Equation 1), AIC scores (Equation
3) and Akaike weights (Equation 5). The resulting model ranking is Dagum, dPlN, Gamma,
Weibull, Fisk, lognormal (cattle number) and Dagum, dPlN, Fisk, Fisk, lognormal, Weibull
(area).

cattle number area

model loglikelihood AIC weight [%] loglikelihood AIC weight [%]

lognormal -2492.21 4988.42 <0.00 -3836.59 7677.18 <0.00

dPlN -2462.85 4933.71 23.30 -3817.57 7643.15 36.00

Weibull -2470.72 4945.43 0.07 -3841.32 7686.63 <0.00

Dagum -2462.70 4931.41 73.66 -3818.04 7642.08 61.40

Fisk -2473.82 4951.64 <0.00 -3822.21 7648.41 2.59

Gamma -2466.91 4937.83 2.97 -3827.67 7659.35 0.01

in Figures 5, 6 and 7 where we use for computational convenience that the logarithm of

a dPlN distributed variable is Normally Laplace distributed (cf. Lemma 1, Appendix B).

In summary, Step 2 of our framework leads to the following result: In case of the

cattle-number data, the Dagum distribution is ranked first while the dPlN is ranked

second. The area data however illustrates nicely why Step 2 alone is not sufficient for

size distribution model selection: it yields a relative ranking (1.Dagum, 2.dPlN, 3.Fisk,

4.Gamma), but without any qualification of whether the fits are statistically plausible.
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Figure 5: Q-Q plots of dPlN (a) and Dagum (b) distributions
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Figure 6: Best fitting Dagum distribution versus kernel density regression of the mean cattle
data.

4.4 Step 3: Microfoundation

Camillo Dagum (1977) defined the distribution of his name by an ordinary differential

equation which covers many of the empirically observed characteristics of income and

wealth distributions. Insofar, it is aimed at describing these distributions well but does

not come with any stochastic or other kind of micro model to explain how the observed
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Figure 7: Best fitting Normal Laplacian distribution versus kernel density regression of the
mean cattle data.

overall distribution might have been generated from an underlying individual microscopic

evolutionary process. Therefore, it lacks microfoundation and we deselect it.

On the other hand, there is a – stochastic – microfoundation for the double Pareto

lognormal (dPlN) distribution. As Reed and Jorgensen (2004) have shown, the dPlN

results from a combination of Gibrat’s Law with two assumptions about the entities

under consideration: (1) the initial size distribution is lognormal and (2) the entities under

consideration are not equally old and have an overally exponential age distribution. That

means, if we have a set of economic entities that follow a lognormal distribution initially

and that have an exponential age distribution and that individually grow according to a

geometric Brownian motion, then that set will be dPlN distributed.

Therefore, in spite of the worse relative goodness-of-fit statistics from Step 2 (cf.

Section 4.3), we select the dPlN as the best size distribution model out of the six candidate

models.

The finding that the dPlN model provides the best fit to the farm size (measured in

cattle number) distribution of Namibian commercial cattle farms contains several mes-

sages. First, we may infer that Gibrat’s Law holds in our farm sample, albeit with two

modifying crucial assumptions: (1) exponentially distributed farm age structure and (2)

lognormal initial farm size distribution. In general, Gibrat’s Law states that the size of a
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firm and its growth rate are independent (Gibrat 1931). Mathematically, this translates

to the following stochastic differential equation:

dS

S
= µdt+ σdW, S(0) = S0, t ≥ 0 (7)

where the sign of the drift term µ determines the behavior of the expected value of S(t)

and where W (t) is the standard Wiener process as introduced in Section 3.4. Thus, if

µ > 0, then E [S(t)] > S0, and vice versa. The parameter σ models the influence of

randomness on the overall process S and the larger the absolute value of σ, the higher

the impact of randomness on the behavior of S(t).

In the following, we give an interpretation of Gibrat’s Law in the context of Namibian

commercial cattle farms. The stochastic differential equation (Equation 7) is equivalent

to15

S(t) = S0 · exp

[(
µ− σ2

2

)
t+ σW (t)

]
. (8)

That is, the finding of the dPlN in our data suggests that individual farm sizes evolve

according to a stochastic exponential growth process (cf. Equation 8). S0 is the initial size

of the farm and it holds that S(t) > 0 for every positive t. If σ = 0, Equation 8 reduces to

simple exponential growth with growth rate µ. Thus, µ reflects the deterministic growth

rate of the farm which the farmer can influence through his management decisions such

as buying or selling cattle, acquisition of new machinery to augment productivity, hiring

or laying off staff and so forth. Consequently, the expected farm size at any positive

time instant is E [S(t)] = S0e
µt. The absolute value of σ thus determines the influence

of randomness on the overall growth process. For the semi-arid rangelands in Namibia,

a huge part of this randomness comes from variation in annual rainfall (Olbrich et al.

2009). The farmer cannot influence this environmental risk, it is thus externally given.

Second, the stochastic exponential growth process (Equation 8) and the underlying

stochastic differential equation imply two things: (1) larger farms do not grow faster or

slower than smaller farms and (2) the growth (rate) of a farm in one period is independent

of the growth (rate) in the preceding period. While the first conclusion is the core of

Gibrat’s Law, the second one is a direct consequence of the fact that the stochastic

15This follows by solving the stochastic differential equation (Equantion 7) with help of the substitution
X(t) = lnS(t) combined with Itō’s lemma (cf. e.g. Protter 2004).
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process (Equation 8) is a Markov chain. Thus, our results suggest that an economic

policy concerned with optimally fast job generation in Namibia’s large agricultural sector

should not focus on certain subgroups of farmers as our results suggest that small farms

do not grow significantly faster than already large ones and vice versa.

5 Discussion

In this section, we summarize what we have established in this paper before we critically

reflect on limitations of, and possible objections to, our framework. Particularly, we will

discuss our method’s robustness, the justification of Step 3 and other possible boundaries

of our approach.

Achievements. We close an existing methodological gap in the literature concerning

the identification of theoretical size distribution models in empirical data. The three-

step statistical framework that we have proposed here contains two original contributions

which are: (1) the generalization and test of an algorithm that was previously introduced

only in the context of testing empirical data for the Pareto distribution (c.f. Step 1,

Section 3.2) and (2) the combination of frequentist and Bayesian statistical methods with

a qualitative criterion of model microfoundation in an integrated three-step framework. As

such, our framework may reconcile the debate of validity between Pareto’s and Gibrat’s

Law (Eeckhout 2009, Lévy 2009) in the case of U.S. city and settlement sizes. Our

illustrative analysis of the size distribution of commercial cattle farms in Namibia at least

suggests that the dPlN distribution which unifies both laws is a promising candidate to

also unify the debate, as already remarked by Giesen and Suedekum (2012). Yet, we

formally expand the analysis by Giesen and Suedekum (2012) in that we admit more

candidate models and replace the biased p-value obtained from the Kolmogorov-Smirnov

test with the better one from the algorithm described in Section 3.2.

Robustness. In our paper, we understand ‘robustness’ in the context of errors of

first and second kind and will discuss these for Step 1 as the effectivity of Steps 2 and 3

critically depends on the success of Step 1. As Kass and Raftery (1995) remark, frequentist

hypothesis testing often suffers from the occurrence of large-sample errors of the first

kind which means that any correct hypothesis will be rejected at some point if one only
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chooses a large enough sample. In our numerical simulations that we have carried out for

performance assessment (Figure 2, Section 3.2), we do not find any support for a greater

error of the first kind with larger samples as the test’s average p-values remain at a level

of about 0.5 for all sample sizes considered (N = 75 . . . 10000). This is in agreement with

Clauset et al. (2009) who find similar results for their power law specific test upon which

we build our generalized version. As to the test’s error of the second kind, sample size

and number of parameters of the hypothesized distributions determine the discriminative

power of the test. In a nutshell, we find the following relations: the greater the sample

the better the discriminative power and the the more parameters in a model the harder

it is to rule out, as expected (Figure 3.2).

Justification of Step 3. Step 3 could obviously be challenged for being a somewhat

broad criterion in an otherwise quite specific framework. Yet, we would rather see this

as an asset than as a shortcoming of our framework. First and foremost, it incorporates

the notion of ‘scientific significance’ (c.f. McCloskey 1995, Johnson 1999) as an additional

feature into our framework and therefore complements the statistical concepts from Steps

1 and 2 naturally aiming at statistical significance. The ‘So what?’ question is however not

touched by asking about statistical significance alone. Step 3 of our framework addresses

this problem in a general way. Second, it prevents Occam’s razor from shaving away not

only ‘all but what is necessary’ but possibly from shaving away more than that.

We have already argued in Section 3.5 that we prefer the AIC to the BIC for providing

a better quantitative compromise between the principle of parsimony and the principle

of diversity. The same argument seems even more striking for Step 3. Consider the re-

lationship between theory of special relativity16 and classical mechanics in physics. The

former is far more complicated than the latter while they have the same subject matter,

the movement of bodies in space and time under the influence of external forces. Describ-

ing and understanding these movements, classical mechanics will do for the most part.

However, it would be wrong to reject special relativity per se for being overly complicated

because special relativity has more explanatory power than classical mechanics. Hence,

while Occam’s razor may in general be a justified principle of science, it may only be ap-

plied to situations where several theories or models are on a par in terms of explanatory

16Special relativity explains the movement of bodies in space and time for velocities close to the speed of
light.
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power. Third, as Steps 1 and 2 are purely statistical criteria, it inevitably suffers from

the limitations common to this approach (we have discussed them in the paragraph ‘Ro-

bustness’). As qualitative criterion, Step 3 circumvents these limitations and tackles the

problem from a completely different angle, effectively lowering the danger of systematic

misjudgments. In summary, Step 3 serves at least three purposes: (1) it integrates the

notion of scientific significance into the selection process, (2) it prevents Occam’s razor

from becoming ‘too sharp’ and (3) it does not face the same limitations as the quantitative

methods from Steps 1 and 2 and therefore can serve as corrective for these shortcomings.

6 Conclusion

In this paper, we have proposed and illustrated a new statistical framework for identifying

theoretical size distribution models in empirical data. The innovative feature of our

framework is the three-step combination of frequentist and Bayesian statistical methods

(Steps 1 and 2) with the criterion of microfoundation (Step 3). Step 1 is based on

a frequentist plausibility-of-fit testing algorithm originally proposed in the context of

testing for Pareto’s rank-size rule in empirical data (Clauset et al. 2009). Here, we have

generalized this algorithm and demonstrated it to work for the case of size distributions

other than Pareto’s. The test answers the question of how plausible some hypothesized

size distribution model is compared to mere chance. To actually compare competing size

distribution models directly with each other, we have proposed to combine this in Step 2

with the Bayesian method of calculating Akaike weights that can be interpreted as relative

model probabilities given the data. We have argued that Step 2 answered the question of

strength of evidence compared to the other candidates. Lastly, we have proposed Step 3

which demands to also take into account possible inferences from overall size distribution

to individual dynamics.

Analyzing a unique and highly resoluted data set of 399 Namibian commercial cattle

farms (Olbrich et al. 2009), we have demonstrated both, use and usefulness of this new

framework. We have found that the Dagum and dPlN distributions fit the data best in

terms of statistical plausibility and relative goodness-of-fit (Steps 1 and 2), yet in Step 3

we have selected the dPlN model because of its superiority in explanatory depth. Thus, we
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were able to infer that commercial cattle farms in Namibia follow a stochastic exponential

growth process which implies that Gibrat’s Law of Proportionate Effect holds and that

environmental risk is a key driver for farm size growth rather than just a minor parameter.

Our analysis suggests at least two promising fields for future research: First and

foremost, we suggest to revisit the debate in the literature concerning the (non-)validity of

Gibrat’s Law and the rank-size rule (i.e. the occurrence of a Pareto/power law in the upper

tail) in empirical data of city and settlement sizes, distribution of wealth and incomes and

the firm size distribution in an economy. Our three-step Bayequentist framework should

enable researchers to make confident statements regarding size distributions in these data

through its robust model selection procedure. Should the dPlN prove to fit to these data

as well – and there is first evidence17 (Giesen et al. 2010, Giesen and Suedekum 2012)

– then the two major strands in literature that either find Gibrat’s or Pareto’s Law to

hold, could be reconciled. Second, it needs to be further investigated to what extent the

growth dynamics discovered here can be generalized to other firms. Further investigations

on this issue might have far reaching implications for the debate on the role of firm sizes

for the economy and its growth.
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Appendix A: mathematical representation and inter-

relation of the most common size distributions

This appendix provides the the mathematical representation of the size distribution mod-

els used in this paper. Figure 8 presents the three functional supergroups that we briefly

mentioned in Section 3.2 and how the members of these are related. The classification

presented here is due to Kleiber and Kotz (2003). Table 4 provides the mathematical

definition of these size distribution models.

Generalized Gamma

Gamma Weibull

Exponential

a = 1 p = 1

a = 1p = 1

(a) GG

dPlN

lognormal double Pareto

Pareto

α, β → ∞ τ, ν → ∞

x > xmin

(b) dPlN

Generalized Beta II

Dagum

Fisk

q = 1

p = 1

(c) GBII

Figure 8: Functional supergroups of size distribution models and relationships within each
group, presented in hierarchical order, i.e. decreasing generality from top to bottom in each
diagram. (a) The generalized gamma (GG) distribution and its siblings. (b) The double Pareto
lognormal family; (c) The family originating from the generalized beta distribution of the second
order (GBII).
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Table 4: The size distribution models most commonly used in economics. Φ denotes the
cumulative density function of the standard normal distribution and Φc(x) its complementary
function 1− Φ(x). For ease of reading, each parameter has been given a distinct name.

model no. of parameters probability density function first used in

lognormal 2 1
σx
√

2π
exp

(
− (ln x−µ)2

2σ2

)
Gibrat (1931)

dPlN 4 αβ
α+βx

−α−1e(αν+α2τ2

2 )Φ
(

ln(x)−ν−ατ2

τ

)
+ Reed and Jorgensen (2004)

αβ
α+βx

β−1e(−βν+ β2τ2

2 )Φc
(

ln(x)−ν+βτ2

τ

)
Pareto 2 1

α−1 ( x
xmin

)−α Pareto (1896)

Weibull 2 k
λ

(
x
λ

)k−1
exp(−(xλ )k) Bartels and van Metelen (1975)

Dagum 3 ap
x

(
(x/b)ap

(( xb )a)+1)p+1

)
Dagum (1977)

Fisk 2 δ
γ (xγ )δ−1/(1 + (xδ )β)2 Fisk (1961)

Gamma 2 xκ−1 exp(− x
Θ )

ΘκΓ(κ) Ammon (1895)

Appendix B: relationship of dPlN and normal Lapla-

cian

Throughout our analysis, we have used the relationship of dPlN and Normal Laplace

distribution which is formulated in Lemma 1. This appendix provides the associated

technicalities.

Lemma 1. The logarithm of a double Pareto lognormally distributed variable is Normal

Laplace distributed, i.e. if X ∼ dPlN(α,β,ν,τ) then Y := lnX ∼ NL(α,β,ν,τ).

Proof. We start from the CDF of the Normal Laplacian and show that PNL(α,β,ν,τ) =

PdPlN(α,β,ν,τ) under a change of variable y = ln x. As Reed and Jorgensen (2004) have

shown, the CDF of the Normal Laplacian reads (Equation (15) in Reed and Jorgensen

2004)

PNL(y) = Φ

(
y − ν
τ

)
− φ

(
y − ν
τ

)
βR(ατ − (y − ν)/τ) + αR(βτ + (y − ν)/τ)

α + β
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where R(z) = (1 − Φ(z))/φ(z) with Φ(z) =
∫ z
−∞ φ(t)dt and φ(z) = 1√

2π
exp(−z2/2). A

change of variable y = lnx yields

P̃ (y = lnx) = Φ

(
lnx− ν

τ

)
− 1

α + β

[
β

1− Φ
(
ατ2−lnx+ν

τ

)
φ
(
ατ − lnx−ν

τ

) φ

(
lnx− ν

τ

)
+

α
1− Φ

(
βτ2+lnx−ν

τ

)
φ
(
βτ + lnx−ν

τ

) φ

(
lnx− ν

τ

)]

which can be simplified to

P̃ (x) = Φ

(
lnx− ν

τ

)
− 1

α + β

[
β

(
1− Φ

(
ατ 2 − lnx+ ν

τ

))
exp

(
(ατ)2

2
− α(lnx− ν)

)
+

αΦc

(
βτ 2 + lnx− ν

τ

)
exp

(
(βτ)2

2
+ β(lnx− ν)

)]
.

Introducing the function A(θ,ν,τ) = exp(θν + (ατ)2/2), we find that

P̃ (x) = Φ

(
lnx− ν

τ

)
− 1

α + β

[
βx−αA(α,ν,τ)Φ

(
ατ 2 − lnx+ ν

τ

)
+

αxβA(−β,ν,τ)Φc

(
lnx− ν + βτ 2

τ

)]
= PdPlN(x) (9)

because of Φ(−z) = 1 − Φ(z). The last Equation (9) is the CDF of the double Pareto

lognormal (eq. (23), Reed and Jorgensen 2004).
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