
How and when is software development an epistemological issue in
digital scholarship? In both the sciences and the humanities, strategies
for designing, building, and maintaining software increasingly interact
with the justifications of knowledge claims. For example, in scientific
computing, the overwhelming complexity of natural phenomena
often requires simulation developers to reject the most theoretically
principled designs in favor of unprincipled approaches that are, at
least, computationally tractable. Similarly, in the digital humanities,
the fundamental constraints of computing, such as the requirement to
disambiguate knowledge representations, are often at odds with the
basic tenets of humanistic inquiry – this tension sometimes leads to
novel design strategies and technical interventions.

Software development has become a routine part of scholarly work,
however our critical language for talking about software as a knowledge
practice is lacking. Software development is conventionally understood
as the practical matter of implementing specifiable computational
tools, not as an ongoing process of materializing theoretical and
epistemological orientations. An account of software that emphasizes
epistemological issues is one that would direct attention toward the
ways knowledge work inheres in code work; it would describe the
means through which software becomes an object of knowledge.
This project builds on theoretical work from science studies to
conceptualize scholarly software as an epistemic object. The primary
feature of epistemic objects, according to Knorr-Cetina, is that they
are necessarily incomplete – this attribute is important because: “[o]
nly incomplete objects pose further questions, and only in considering

CONSPICUOUS COMPUTING –
SOFTWARE DEVELOPMENT AS
A KNOWLEDGE PRACTICE
Seth Erickson | University of California, Los Angeles

Tuesday | September, 27th, 10-13 | Panel 1b

31

objects as incomplete do scientists move forward with their work”.
The apparent incompletes or insufficiency of scholarly software can be
thought of as a kind of conspicuousness. Two kinds of conspicuousness
in scholarly software are posited: computational conspicuousness of
scholarly objects and the epistemological conspicuousness of software
objects.

Given this (necessarily sketchy and provisional) theoretical
framework, the following research questions are put forward:

 1.	 What are the kinds of conspicuousness that arise in scholarly
software development? Can they be divided into the computational
and the epistemological as presented above?
a.	 What are the dynamics between these kinds of conspicuousness
over time?
b.	 How do the material aspects of scholarly and technical work
structure the relationship between these types of conspicuousness?
2.	 How are practices other than software development used to
manage the conspicuousness of scholarly software?

These questions will be addressed through a comparative case study
of two groups of scholarly software developers: a group of physicists
building computer simulations to study plasma phenomena and
a group of humanities scholars building a web-based platform for
authoring and publishing born digital scholarship. The case studies
will be informed by both ethnographic fieldwork and historical
research on the specific software practices observed at each site. The
case studies will be carried out sequentially, one after the other, with
roughly six months of fieldwork at each site.

Seth Erickson is PhD student at the University of California. He has a B.A. in
History of Art and Architecture from Brown University and a MLIS from the Graduate
School of Education and Information Studies at UCLA. His research interests are
software studies, critical technical practice, digital humanities and science studies.
Recent publication: Erickson, E.; Kelty, C.: “The Durability of Software”. In: Kaldrack,
Leeker (Eds.), There is no Software, there are just Services (2015).

