Materials mechanics

The professorship for materials mechanics with a focus on process simulation is a shared professorship carried out in cooperation with the Helmholtz-Zentrum hereon GmbH. In particular, this is concerned with the digital modelling of technological production processes and materials, whereby considerable focus is placed on local modification processes, solid state joining processes and forming processes. The modelling approaches which are used for these range from micromechanics (e.g. crystal plasticity and phase field simulations), to continuum mechanics for describing material behaviour, to approaches for complex process simulations.

At the same time, one of the main focuses of the activities carried out by the professorship at the Leuphana is the development and application of mathematical models (material models) for describing microstructure development and the deformation behaviour of various metallic materials across multiple length scales. These developments often take place in close conjunction with the experimental work being carried out at the hereon. The length scale and timescale on which the relevant processes in the material take place or on which these are modelled depends on the material, the process and the component. Over the past few years, the work group has built up a vast wealth of experience when it comes to modelling many material systems such as these. In addition to carrying out intense studies on deformation processes in metallic materials, the work group has also dealt with additional material systems such as metallic glasses and polymers.

At the Helmholtz-Zentrum hereon, the professorship deals specifically with the experimental study and process modelling of solid state joining processes and manufacturing processes which act on a local level. Some named examples of these are joining processes such as friction stir welding and laser welding, as well as additive manufacturing processes such as friction welding and laser deposition welding. This is accompanied by local modification processes for the targeted adjustment of residual stresses (residual stress engineering), such as laser shock peening and hammer peening. One of the fundamental goals of these research activities is to investigate the entire system of process, microstructure and property through a combination of experimental and simulation-based approaches in order to achieve an improved physical understanding thereof. By adapting the process parameters in a targeted manner, the insights gained can be used to optimise material or structural behaviour, e.g. with regard to deformation and failure behaviour.

The professorship plays an active role in various national and international organisations such as the GAMM (International Association of Applied Mathematics and Mechanics) or the ZHM (Centre for Advanced Materials).

Key teaching focuses are in the fields of applied mechanics and material modelling, as well as in the provision of additional engineering basics.

Bachelor / Master Thesis

Team

  • Prof. Dr.-Ing. Benjamin Klusemann
  • Dominik Pöltl, M. Sc.
  • Lasse Malaske, M.Sc.
  • Dr. Harikrishnasinh Rana
  • Dr. Zina Kallien