Aktuelles Lehrangebot

Current Courses

Prof. Dr. Jacqueline Loos

Methods of Environmental Sciences


The module conveys basic knowledge and practical research examples through which the diversity of methods available in environmental & sustainability science is exemplified and contextualized. The module presents an overview of approaches to obtain, analyse and interpret data within science, and embeds these into a broader ontological framework. While the focus is generally on how methods can aid and enable the production of knowledge, a connection to the history of science, including the origin and development of each specific method is part of the lecture.

Ziel: The study of environmental & sustainability sciences aims to combine topics that are engaged from different and diverse perspectives, yet is certainly more than the sum of its parts. Environmental & sustainability sciences engage in a holistic perspective and take normative dimensions as well as a focus on transformative knowledge strongly into account. Within this module students will learn to embed methods into the context of knowledge production, spanning across system, normative and transformative knowledge. Students will begin to understand that the choice of and experience in applying methods is a precondition of research. In addition, students will be enabled to recognize the normative dimension of scientific methods by starting to reflect about drawbacks and benefits of specific methods, and how the choice of methods may influence the process of knowledge production.The students will acquire basic skills in the methods of environmental & sustainability sciences, and embed this knowledge into the broader context of methods in science, starting with an introduction into developing study designs building on the application of methods. Through the application of simplified hands-on experience with the specific methods the students will get an initial understanding of the benefits and challenges of the individual methods. The knowledge acquired in the module and applied to exemplary case studies of publications, thereby enabling students to start to get engaged with the scientific canon. By engaging students through blended learning - building on an extensive Wiki as well as Video and podcast formats, which students are expected to engage with in order to pass the exam - they further learn to participate in the scientific discourse.

Ecological restoration for sustainability - final module (transdisciplinary project)


With the increasing human pressure on ecosystems and cultural landscapes, one of the main challenges is to design and develop ecological restoration that supports the preservation of biodiversity, ecosystem services and livelihood security. A central theme here is to integrate the ecological dimension with the socio-cultural dimension in order to create sustainable landscapes and equitable societies. Therefore, restoration does not only focus on ecological functions and biodiversity, but also on human communities, their knowledge and values. Indeed, restoration requires of society as agents of sustainable transformations.

During the seminar in the second module we will examine how we can restore nature, how we can engage different social actors and how we can measure the impacts of restoration strategies on human wellbeing and biodiversity.

Ziel: The overall goal of this seminar module is to move on from the designing and implementing work performed in the previous semester to working directly on the transdisciplinary project you have chosen in the previous semester. An outcome will include an outreach project e.g. a film, presentation to the wider public or article.

Upon completion of this module, students should be able to:

1. Get knowledge about basic ecological and social methods for implementing restoration practices;

2. Get understanding about the complex interactions between social and ecological systems in restoration;

3. Ability to deal with complexity

4. Be familiar with the scientific literature regarding ecological restoration

Students will also get competencies on:

1. Ability to systematically research information

2. Ability to work in interdisciplinary teams

3. Ability to communicate in writing and oral formats.

4. Designing and implementing an transdisciplinary project (from start to "finish")

Einführung in die Umweltwissenschaften. Übung/Praktikum Naturwissenschaften Gruppe B1 (für UWI)


Diese Gruppe ist für Studierende des Major Umweltwissenschaften.

Die Übungen finden zweiwöchentlich mit jeweils 4 Stunden pro Einheit statt. Es gibt insgesamt 6 Termine, die folgende Themen behandeln:

1. Bewertung von Fliessgewässern anhand ihrer Trophie (Einstufung nach dem Saprobiensystem durch Analyse ihrer biotischen Parameter inklusive der Bestimmung on Organismen)

2. Messung und Bedeutung von physikalischen Umweltfaktoren am Beispiel Luftdruck und der Löslichkeit von Sauerstoff in Abhängigkeit der Temperatur

3. und 4. Grundoperationen im chemischen Labor und Einführung in die experimentelle Arbeit

5. und 6. Einführende Versuche zur Bodenökologie

Teil 1: Bedeutung von Bodenacidität und Bodenfarben – pH-Wert- und Farbbestimmung von Bodenhorizonten

Teil 2: Bedeutung von Bodenarten - Siebanalyse und Fingerprobe

This group is for students of the Major Umweltwissenschaften.

The practicals take place every other week, with four hours per unit. There are six dates for the practicals, that cover the following topics:

1. Evaluation of rivers and streams according to their trophic status (Classification according to the saprobic system via analysis of biotic parameters including the determination of organisms)

2. Measurement and importance of physical environmental factors using the example of air pressure and the solubility of oxygen as a function of temperature

3. and 4. Basic laboratory techniques in chemistry and introduction to experimental work

5. and 6. Introductive experiments in soil ecology

Part 1: Significance of soil acidity and soil color - pH and color analysis of soil horizons

Part 2: Importance of soil texture - grain size (sieving) and manual analysis (“feel method”)

Ziel: Verständnis der grundlegende Prozessen in der Umwelt und Erlernen der Forschungsgegenstände der Umweltwissenschaften

Wissenschaftliche Grundkenntnisse der Umweltwissenschaften inklusive wichtiger Fachbegriffe

Lernstrategien, erste Labormethoden in den Naturwissenschaften

Transferfähigkeiten, Team- und Organisationsfähigkeit, Diskussionsfähigkeit, Gruppenarbeit

Acquire knowledge of science basics in environmental science that are necessary to be able to understand and engage in more advanced courses within the environmental science bachelor major.

Method competence: learning strategies, first experience with laboratory and field methods in natural sciences.

Ability to transfer knowledge; improve team and organisational skills, ability to discuss in a group.

Environmental Sciences - an Introduction. Practical natural sciences. Group A1 (for GESS)


Diese Gruppe ist für Studierende des Major Global Environmental and Sustainability Studies.

Die Übungen finden zweiwöchentlich mit jeweils 4 Stunden pro Einheit statt. Es gibt insgesamt 6 Termine, die folgende Themen behandeln:

1. Bewertung von Fliessgewässern anhand ihrer Trophie (Einstufung nach dem Saprobiensystem durch Analyse ihrer biotischen Parameter inklusive der Bestimmung on Organismen)

2. Messung und Bedeutung von physikalischen Umweltfaktoren am Beispiel Luftdruck und der Löslichkeit von Sauerstoff in Abhängigkeit der Temperatur

3. und 4. Grundoperationen im chemischen Labor und Einführung in die experimentelle Arbeit

5. und 6. Einführende Versuche zur Bodenökologie

Teil 1: Bedeutung von Bodenacidität und Bodenfarben – pH-Wert- und Farbbestimmung von Bodenhorizonten

Teil 2: Bedeutung von Bodenarten - Siebanalyse und Fingerprobe

This group is for students of the Major Global Environmental and Sustainaibility Studies.

The practicals take place every other week, with four hours per unit. There are six dates for the practicals, that cover the following topics:

1. Evaluation of rivers and streams according to their trophic status (Classification according to the saprobic system via analysis of biotic parameters including the determination of organisms)

2. Measurement and importance of physical environmental factors using the example of air pressure and the solubility of oxygen as a function of temperature

3. and 4. Basic laboratory techniques in chemistry and introduction to experimental work

5. and 6. Introductive experiments in soil ecology

Part 1: Significance of soil acidity and soil color - pH and color analysis of soil horizons

Part 2: Importance of soil texture - grain size (sieving) and manual analysis (“feel method”)

Ziel: Verständnis der grundlegende Prozessen in der Umwelt und Erlernen der Forschungsgegenstände der Umweltwissenschaften

Wissenschaftliche Grundkenntnisse der Umweltwissenschaften inklusive wichtiger Fachbegriffe

Lernstrategien, erste Labormethoden in den Naturwissenschaften

Transferfähigkeiten, Team- und Organisationsfähigkeit, Diskussionsfähigkeit, Gruppenarbeit

Acquire knowledge of science basics in environmental science that are necessary to be able to understand and engage in more advanced courses within the environmental science bachelor major.

Method competence: learning strategies, first experience with laboratory and field methods in natural sciences.

Ability to transfer knowledge; improve team and organisational skills, ability to discuss in a group.

Environmental Sciences - an Introduction. Practical natural sciences. Group A3 (for GESS)


Diese Gruppe ist für Studierende im Major Umweltwissenschaften.

Die Übungen finden zweiwöchentlich mit jeweils 4 Stunden pro Einheit statt. Es gibt insgesamt 6 Termine, die folgende Themen behandeln:

1. Bewertung von Fliessgewässern anhand ihrer Trophie (Einstufung nach dem Saprobiensystem durch Analyse ihrer biotischen Parameter inklusive der Bestimmung on Organismen)

2. Messung und Bedeutung von physikalischen Umweltfaktoren am Beispiel Luftdruck und der Löslichkeit von Sauerstoff in Abhängigkeit der Temperatur

3. und 4. Grundoperationen im chemischen Labor und Einführung in die experimentelle Arbeit

5. und 6. Einführende Versuche zur Bodenökologie

Teil 1: Bedeutung von Bodenacidität und Bodenfarben – pH-Wert- und Farbbestimmung von Bodenhorizonten

Teil 2: Bedeutung von Bodenarten - Siebanalyse und Fingerprobe

The practicals take place every other week, with four hours per unti (30 students per unit, so 6 parallel practicals going on). There are six dates for the practicals, that cover the following topics:

1. Evaluation of rivers and streams according to their trophic status (Classification according to the saprobic system via analysis of biotic parameters including the determination of organisms)

2. Measurement and importance of physical environmental factors using the example of air pressure and the solubility of oxygen as a function of temperature

3. and 4. Basic laboratory techniques in chemistry and introduction to experimental work

5. and 6. Introductive experiments in soil ecology

Part 1: Significance of soil acidity and soil color - pH and color analysis of soil horizons

Part 2: Importance of soil texture - grain size (sieving) and manual analysis (“feel method”)

Ziel: Verständnis der grundlegende Prozessen in der Umwelt und Erlernen der Forschungsgegenstände der Umweltwissenschaften

Wissenschaftliche Grundkenntnisse der Umweltwissenschaften inklusive wichtiger Fachbegriffe

Lernstrategien, erste Labormethoden in den Naturwissenschaften

Transferfähigkeiten, Team- und Organisationsfähigkeit, Diskussionsfähigkeit, Gruppenarbeit

Acquire knowledge of science basics in environmental science that are necessary to be able to understand and engage in more advanced courses within the environmental science bachelor major.

Method competence: learning strategies, first experience with laboratory and field methods in natural sciences.

Ability to transfer knowledge; improve team and organisational skills, ability to discuss in a group.

Further information about courses you will find in our academic portal myStudy.

Current Courses

M.Sc. Simon Thomsen

Introduction to Spatial analysis in GIS


Sustainability challenges often require analysis and knowledge of spatial data like land-use or patterns and networks of infrastructure. GIS tools offer both mapping and data analysis options and are widely used in science and application. In this course, you will get to know ArcGIS, a commercial software used in both in science and the private secctor. The seminar adresses the theoretical background of GIS and spatial data as well as its practical application in the software. Following topics will covered:

-Coordinate systems, projections and basics of cartography

-Geoprocessing with vector data in a multi-criteria analysis

-Geoprocessing of raster data

-Statistics and regressions in a spatial context

Ziel: After this course you should be able to have an idea on data that can be used for GIS, be able to create or alter a map and have knowledge on basic analytical tools.

Advanced Spatial Analysis Methods


In this advanced course for spatial analysis, students will get in touch with more complex spatial problems. These will also be more closely linked to real world socio-environmental problems. As examples, we aim to deal with spatial interpolations, habitat fragmentation, species distribution modelling and basics of remote sensing and land cover change detection. Apart from the application of these methods, we will also discuss their theoretical background and closely look at the uncertainties which come along with them. Different softwares will be used in this context, such as GIS (QGIS, ArcGIS) as well as R and Google Earth Engine. It is therefore necessary that students have completed an introductory course to GIS and spatial data. Further knowledge of R is desireable, but not necessary.

Further information about courses you will find in our academic portal myStudy.

Current Courses

Dr Cormac Walsh

Planning Workshop Hamburg Metropolitan Region: Sustainable Regional Development and Urban-Rural Relationships


Da die politisch-administrativen Grenzen von Großstädten mit ihren funktionalen Grenzen nicht übereinstimmen, ist eine räumliche Koordination über Stadt-, Kreis- und Ländergrenzen hinweg erforderlich. Durch Zusammenarbeit auf der metropolregionalen Ebene können Synergien hergestellt und regionalpolitische Herausforderungen gemeinsam bewältigt werden. Das Beispiel der Metropolregion Hamburg zeigt jedoch, das grenzüberschreitende Zusammenarbeit im Stadt-Umland Kontext nicht als gegeben angenommen werden. Die Stadt Hamburg, die umliegende Gemeinden und Landkreise und die Bundesländer Schleswig-Holstein und Niedersachsen verfolgen oft unterschiedliche Ziele. Die Kosten und Vorteile der Stadtentwicklung werden nicht gleich verteilt und angrenzende Städten und Gemeinden stehen oft in Konkurrenz zueinander. Seit den 1990er Jahren fehlt ein gemeinsame Planungsstrategie oder räumliches Leitbild um die Entwicklung der Metropolregion nachhaltig zu steuern. Im Zuge der ökonomischen Globalisierung und Erweiterung der Metropolregion wird zunehmend großer Wert auf internationale Wettbewerbsfähigkeit und Sichtbarkeit gelegt. In diesem Zusammenhang verschiebt sich der Blick nach außen und Herausforderungen der nachhaltige Raumentwicklung innerhalb der Stadtregion haben an Bedeutung verloren.

In dieser Übung beschäftigen wir uns mit Fragen der Stadtentwicklung in der Metropolregion Hamburg. Anhand von Fallstudien werden wir kritische Herausforderungen und aktuelle Ansätze der Stadt-Umland Kooperation in den Bereichen Wohnungspolitik, Freiraumsicherung und Verkehrspolitik untersuchen. Teilnehmende Studierenden werden aufgefordert ins Feld zu gehen, neue Erkenntnisse zu gewinnen und mit diversen Akteuren der Stadt- und Regionalentwicklung ins Gespräch zu kommen. Die Übung soll praxisorientiert sein, jedoch mit Bezug auf relevante Literatur der Stadtgeographie bzw. Stadt- und Regionalentwicklung.

Ziel: Auseinandersetzung mit aktuelle Planungsstrategien und -Maßnahmen im Kontext einer Metropolregion, Aneignung von theoretischem und praxisrelevantem Wissen zu den Themen der Stadt-Land Verhältnisse und nachhaltige Regionalentwicklung.

Environmental Geography: Society-Environment Interactions at the Coast


The coast is a space of interaction between societal and environmental systems. It may be understood as a natural space, shaped by the wind and the waves, a biodiverse space where marine and terrestrial ecosystems come together and have adapted to intertidal conditions. Coasts are, however, also social and cultural spaces, given particular meanings by generations of coastal and island communities as well as summer visitors. The North Sea coast is marked by a long history of struggle against the wild and unpredictable nature of the sea. Coastal lands have been lost to the sea in catastrophic storm floods, to be reclaimed by later generations and protected through extensive systems of dikes. Only in recent decades has shift occurred towards valuing and protecting the nature of the sea and coast from the negative impacts of human society.

In this seminar, students will learn the fundamentals of environmental geography, focussing on the coast as a space of interaction between societal and environmental systems. In the first part of the course, students will be introduced to core spatial concepts such as space, place and landscape and ways of understanding nature-society relations. This will provide a basis for an integrated perspective on the coast. The second half of the course will focus on diverse approaches to managing society-environment interactions at the coast, from dike-based coastal protection and dune management to climate adaptation and working with nature.

Ziel: Students will learn the fundamentals of environmental geography and the relevance of a society-environment perspective to understanding the coastal landscapes

Further information about courses you will find in our academic portal myStudy.