Zertifikatsstudium Data Analytics: Modulinhalte
Das Zertifikatsstudium Data Analytics deckt in drei Modulen von jeweils 5 Credit Points die Grundlagen im Bereich der angewandten Datenanalyse ab. Durch das Blended-Learning Konzept bietet der Studiengang eine hohe Flexibilität und ist berufsbegleitend für Berufstätige in Vollzeit konzipiert.
Die Module im Zertifikatsstudium Data Analytics
DA-F1: Angewandte Statistik
Dieses Modul vermittelt Kenntnisse aus dem Bereich der angewandten Statistik. Sie lernen was ein statistisches Problem ist und welche Werkzeuge die Statistik bereitstellt, um diese Probleme zu beschreiben und zu analysieren. Die Themen sind inhaltlich in den Bereichen der deskriptiven uni- und multivariaten Statistik (z.B. Häufigkeitsverteilungen, Lage- und Konzentrationsmaße, Korrelationen und Kausalitäten und mehr) und der Wahrscheinlichkeitsrechnung (z.B. dem Begriff der Unabhängigkeit, Zufallsvariablen und deren Verteilung und mehr) zu verorten. Das Modul schließt mit einer schriftlichen Klausur als Prüfungsleistung ab.
DA-F2: Programmierung in Python
Dieses Modul behandelt Grundlagen der Programmierung in Python und Konzepte der Informationsverarbeitung. Ein Ziel ist es Ihnen eine thematisch breit angelegte Menge an Funktionalitäten von Python zu vermittelt und Sie dazu zu befähigen, einfache programmatische Problemstellungen selbstständig zu lösen. Begleitend zur Vorlesung werden Übungsaufgaben bereitgestellt, in denen das Gelernte eigenständig angewandt und gefestigt werden kann. Dabei kommen vor allem Jupyter Notebooks, Anaconda und Pycharm zum Einsatz. In der Prüfungsleistung demonstrieren Sie anhand einer praktischen Abschlussaufgabe Ihre Lernfortschritte.
DA-F3: Praktische Datenanalyse
Dieses Modul knüpft inhaltlich an die beiden vorherigen Module an und befasst sich mit Themen wie z. B. Datenaufbereitung und -verarbeitung oder Visualisierung. Sie lernen, mit bekannten Programmbibliotheken Problemstellungen aus dem Bereich der angewandten Datenanalyse zu bearbeiten. Dazu gehören beispielsweise das Data Management Preprocessing und Cleaning mit Pandas und die Visualisierung mit Matplotlib und Tableau.
Ein Teil des Moduls befasst sich zudem mit dem Thema des Data Driven Decision Making (mit sklearn) und in diesem Kontext mit grundlegenden Algorithmen des maschinellen Lernens. Im Rahmen einer Projektarbeit bearbeiten Sie eine abschließende praktische Aufgabe als Prüfungsleistung.
Wichtige Ordnungen und Informationen für Ihr Studium
Die Ordnungen zur Zulassung, die Rahmenprüfungsordnung (RPO) sowie die Fachspezifischen Anlagen (FSA) finden Sie hier.
Kontakt & Beratung
Koordination
Maria Kruse, M.A.
Universitätsallee 1, C4.308a
21335 Lüneburg
Fon +49.4131.677-2129
maria.kruse@leuphana.de
E-Mail-Kontakt
Sie erreichen das Team des Studiengangs jederzeit unter der folgenden E-Mail dataanalytics@leuphana.de.